Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New long-acting local anesthetic derived from algae effectively blocks pain in surgical patients

24.02.2011
Children's Hospital Boston to collaborate with Chilean start-up to conduct US preclinical and clinical studies

A U.S.-Chile collaboration is bringing surgical patients closer to having a long-acting local anesthetic. In a randomized, double-blind trial, patients given neosaxitoxin, a new local anesthetic derived from algae, had significantly less postoperative pain and recovered about two days sooner than those given the commonly used local anesthetic bupivacaine.

Based on this finding, Children's Hospital Boston, a co-investigator on the study, has signed a collaboration agreement with biotech start-up company Proteus SA (Santiago, Chile) to move the new anesthetic toward clinical adoption.

Tens of millions of patients have operations requiring local anesthesia each year. Current local anesthetics act for less than 8 hours; when they wear off, patients generally need opioid analgesics, which cause substantial side effects, including nausea, sedation, shallow breathing, sleepiness, constipation and itching. These side effects often delay recovery and can result in prolonged hospitalization.

Neosaxitoxin (neoSTX) provides local anesthesia for more than 24 hours. It is a site 1 sodium-channel blocker, part of a larger class of emerging anesthetics based on molecules derived from aquatic organisms.

"In my opinion, there has not been a truly innovative new local anesthetic medication in the last 40 to 50 years," notes study coauthor Charles Berde, MD, PhD, chief of the Division of Pain Medicine at Children's Hospital Boston. "Most drugs introduced over that time period have represented only minimal advances. There have been candidate drugs that went in novel directions, but they've had shortcomings, and none have made it to market."

The neoSTX trial, the first of its kind, involved 137 Chilean patients having laparoscopic removal of their gall bladders. As reported in the March-April issue of Regional Anesthesia and Pain Medicine, significantly fewer patients randomized to neoSTX reported severe postoperative pain at the incision site at both 12 hours (4 vs. 18 percent) and 24 hours (6 vs. 16 percent). Significantly more neoSTX-treated patients had complete absence of pain at 12 hours, both at rest (88 vs. 69 percent) and with movement (80 vs. 60 percent). Patients in the neoSTX group reported a full functional recovery approximately 2 days earlier. No serious adverse reactions occurred in either group.

The trial was a three-part effort led by first author Alberto Rodríguez-Navarro, MD, at Padre Hurtado Hospital (Santiago, Chile); a clinical-academic team led by Berde; and a pharmaceutical development team led by Luis Novoa, CEO of Proteus SA. "As a surgeon who specializes in abdominal surgery, I think that the future of pain treatment will benefit greatly from this type of multidisciplinary collaboration," says Rodríguez-Navarro.

The Chilean and American investigators met through their scientific publications. Berde and Daniel Kohane, MD, PhD, a clinician-researcher in Critical Care Medicine at Children's, had studied site 1 sodium-channel blockers derived from marine toxins for more than a decade. Their work in rats showed that the compounds lack the side effects of existing anesthetics and opioid analgesics. They are not addictive, have no cardiac toxicity and don't cross the blood-brain barrier, thus avoiding the risk of seizures occasionally seen with existing local anesthetics. They also cause minimal local tissue reaction, avoiding the nerve and muscle damage seen with high concentrations of existing local anesthetics.

Meanwhile, in Chile, Rodríguez-Navarro had published work examining the anesthetic potential of neoSTX, derived from local algae.

The scientists at Proteus have developed expertise in extracting, culturing and purifying large amounts of neoSTX from freshwater microalgae, and formulating the compound for medical use. The planned clinical studies at Children's, hoped to begin this year, will look for optimal doses that block pain while avoiding toxicity.

Groups of young adult volunteers will receive neoSTX injections under the skin in gradually increasing doses. Although NeoSTX has appeared very safe in over 400 patients in clinical trials so far, the upcoming study will more precisely determine the margin of safety. Subjects will be closely monitored for numbness at the injection sites, as well as whole-body effects.

The team believes that even more prolonged local anesthesia is possible. They have data from animals and exploratory studies in humans showing that combining Site-1 sodium channel blockers with existing local anesthetics can produce nerve blockade for up to 2 to 4 days – with minimal local or systemic side effects.

"We think that the demand for a long-acting local anesthetic will vast," says Novoa of Proteus. "Our initial estimates suggest a market greater than 1 billion dollars."

Children's holds a U.S. patent on site 1 sodium-channel toxins as prolonged-duration local anesthetics. The clinical trial was supported by an Innova Corfo Project.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 392-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Boston Children's, visit its Vector blog.

Erin McColgan | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>