Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping beverages cool in summer: It’s not just the heat, it’s the humidity

26.04.2013
In spring a person’s thoughts turn to important matters, like how best to keep your drink cold on a hot day. Though this quest is probably as old as civilization, University of Washington climate scientists have provided new insight.
It turns out that in sultry weather condensation on the outside of a canned beverage doesn’t just make it slippery: those drops can provide more heat than the surrounding air, meaning your drink would warm more than twice as much in humid weather compared to in dry heat. In typical summer weather in New Orleans, heat released by condensation warms the drink by 6 degrees Fahrenheit in five minutes.

“Probably the most important thing a beer koozie does is not simply insulate the can, but keep condensation from forming on the outside of it,” said Dale Durran, a UW professor of atmospheric sciences.

He’s co-author of results published in the April issue of Physics Today that give the exact warming for a range of plausible summer temperatures and humidity levels. For example, on the hottest, most humid day in Dhahran, Saudi Arabia, condensation alone would warm a can from near-freezing temperature to 48 degrees Fahrenheit in just five minutes.

“Condensation, atmospheric motion, and cold beer”

The authors describe their results

Watch UW graduate students test the theory

The investigation began a couple of years ago when Durran was teaching UW Atmospheric Sciences 101 and trying to come up with a good example for the heat generated by condensation. Plenty of examples exist for evaporative cooling, but few for the reverse phenomenon. Durran thought droplets that form on a cold canned beverage might be just the example he was looking for.

A quick back-of-the-napkin calculation showed the heat released by water just four thousandths of an inch thick covering the can would heat its contents by 9 degrees Fahrenheit.

“I was surprised to think that such a tiny film of water could cause that much warming,” Durran said.

Though he’s normally more of a theoretician, Durran decided this result required experimental validation. He recruited co-author Dargan Frierson, a UW associate professor of atmospheric sciences, and they ran an initial test in Frierson’s little-used basement bathroom, using a space heater and hot shower to vary the temperature and humidity.

The findings corroborated the initial result, and they embarked on a larger-scale test.

“You can’t write an article for Physics Today where the data has come from a setup on the top of the toilet tank in one of the author’s bathrooms,” Durran said.

Univ. of Washington

A test subject being weighed to measure the amount of condensation. The cap prevents air from moving through the opening on top.

First they recruited colleagues in Frierson’s beachside hometown of Wilmington, North Carolina, to duplicate the experiment and compare results with those taken on a hot, dry Seattle day. But they decided they needed to test a wider range of conditions.

Finally, last summer undergraduates Stella Choi and Steven Brey joined the project to run a proper experiment in the UW Atmospheric Sciences building. They unearthed an experimental machine with styling that looks to be from the 1950s, last used decades ago to simulate cloud formation.

With funding for educational outreach from the National Science Foundation, the students first cooled a can in a bucket of ice water then dried it and placed it in the experimental chamber dialed up to the appropriate conditions. After five minutes they removed the can, weighed it to measure the amount of condensation, and recorded the final temperature of the water inside.

The phenomenon at work – latent heat of condensation – is central to Frierson’s research on water vapor, heat transfer and global climate change.

“We expect a much moister atmosphere with global warming because warmer air can hold a lot more water vapor,” Frierson said. Because heat is transferred when water evaporates or condenses, this change affects wind circulation, weather patterns and storm formation.

Durran’s research includes studies of thunderstorms, which are powered by heat released from condensation in rising moist air.

As for his demonstration of the heat released during this process, he and Frierson are now working with the National Center for Atmospheric Research to develop an educational tool that will let students around the world try the experiment and post their results online for comparison.

The example promises to become as classic as a cold drink on a hot summer day.

For more information, contact Durran at 206-543-7440 or durrand@atmos.washington.edu and Frierson at 206-685-7364 or dargan@atmos.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>