Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping beverages cool in summer: It’s not just the heat, it’s the humidity

26.04.2013
In spring a person’s thoughts turn to important matters, like how best to keep your drink cold on a hot day. Though this quest is probably as old as civilization, University of Washington climate scientists have provided new insight.
It turns out that in sultry weather condensation on the outside of a canned beverage doesn’t just make it slippery: those drops can provide more heat than the surrounding air, meaning your drink would warm more than twice as much in humid weather compared to in dry heat. In typical summer weather in New Orleans, heat released by condensation warms the drink by 6 degrees Fahrenheit in five minutes.

“Probably the most important thing a beer koozie does is not simply insulate the can, but keep condensation from forming on the outside of it,” said Dale Durran, a UW professor of atmospheric sciences.

He’s co-author of results published in the April issue of Physics Today that give the exact warming for a range of plausible summer temperatures and humidity levels. For example, on the hottest, most humid day in Dhahran, Saudi Arabia, condensation alone would warm a can from near-freezing temperature to 48 degrees Fahrenheit in just five minutes.

“Condensation, atmospheric motion, and cold beer”

The authors describe their results

Watch UW graduate students test the theory

The investigation began a couple of years ago when Durran was teaching UW Atmospheric Sciences 101 and trying to come up with a good example for the heat generated by condensation. Plenty of examples exist for evaporative cooling, but few for the reverse phenomenon. Durran thought droplets that form on a cold canned beverage might be just the example he was looking for.

A quick back-of-the-napkin calculation showed the heat released by water just four thousandths of an inch thick covering the can would heat its contents by 9 degrees Fahrenheit.

“I was surprised to think that such a tiny film of water could cause that much warming,” Durran said.

Though he’s normally more of a theoretician, Durran decided this result required experimental validation. He recruited co-author Dargan Frierson, a UW associate professor of atmospheric sciences, and they ran an initial test in Frierson’s little-used basement bathroom, using a space heater and hot shower to vary the temperature and humidity.

The findings corroborated the initial result, and they embarked on a larger-scale test.

“You can’t write an article for Physics Today where the data has come from a setup on the top of the toilet tank in one of the author’s bathrooms,” Durran said.

Univ. of Washington

A test subject being weighed to measure the amount of condensation. The cap prevents air from moving through the opening on top.

First they recruited colleagues in Frierson’s beachside hometown of Wilmington, North Carolina, to duplicate the experiment and compare results with those taken on a hot, dry Seattle day. But they decided they needed to test a wider range of conditions.

Finally, last summer undergraduates Stella Choi and Steven Brey joined the project to run a proper experiment in the UW Atmospheric Sciences building. They unearthed an experimental machine with styling that looks to be from the 1950s, last used decades ago to simulate cloud formation.

With funding for educational outreach from the National Science Foundation, the students first cooled a can in a bucket of ice water then dried it and placed it in the experimental chamber dialed up to the appropriate conditions. After five minutes they removed the can, weighed it to measure the amount of condensation, and recorded the final temperature of the water inside.

The phenomenon at work – latent heat of condensation – is central to Frierson’s research on water vapor, heat transfer and global climate change.

“We expect a much moister atmosphere with global warming because warmer air can hold a lot more water vapor,” Frierson said. Because heat is transferred when water evaporates or condenses, this change affects wind circulation, weather patterns and storm formation.

Durran’s research includes studies of thunderstorms, which are powered by heat released from condensation in rising moist air.

As for his demonstration of the heat released during this process, he and Frierson are now working with the National Center for Atmospheric Research to develop an educational tool that will let students around the world try the experiment and post their results online for comparison.

The example promises to become as classic as a cold drink on a hot summer day.

For more information, contact Durran at 206-543-7440 or durrand@atmos.washington.edu and Frierson at 206-685-7364 or dargan@atmos.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>