Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping beverages cool in summer: It’s not just the heat, it’s the humidity

26.04.2013
In spring a person’s thoughts turn to important matters, like how best to keep your drink cold on a hot day. Though this quest is probably as old as civilization, University of Washington climate scientists have provided new insight.
It turns out that in sultry weather condensation on the outside of a canned beverage doesn’t just make it slippery: those drops can provide more heat than the surrounding air, meaning your drink would warm more than twice as much in humid weather compared to in dry heat. In typical summer weather in New Orleans, heat released by condensation warms the drink by 6 degrees Fahrenheit in five minutes.

“Probably the most important thing a beer koozie does is not simply insulate the can, but keep condensation from forming on the outside of it,” said Dale Durran, a UW professor of atmospheric sciences.

He’s co-author of results published in the April issue of Physics Today that give the exact warming for a range of plausible summer temperatures and humidity levels. For example, on the hottest, most humid day in Dhahran, Saudi Arabia, condensation alone would warm a can from near-freezing temperature to 48 degrees Fahrenheit in just five minutes.

“Condensation, atmospheric motion, and cold beer”

The authors describe their results

Watch UW graduate students test the theory

The investigation began a couple of years ago when Durran was teaching UW Atmospheric Sciences 101 and trying to come up with a good example for the heat generated by condensation. Plenty of examples exist for evaporative cooling, but few for the reverse phenomenon. Durran thought droplets that form on a cold canned beverage might be just the example he was looking for.

A quick back-of-the-napkin calculation showed the heat released by water just four thousandths of an inch thick covering the can would heat its contents by 9 degrees Fahrenheit.

“I was surprised to think that such a tiny film of water could cause that much warming,” Durran said.

Though he’s normally more of a theoretician, Durran decided this result required experimental validation. He recruited co-author Dargan Frierson, a UW associate professor of atmospheric sciences, and they ran an initial test in Frierson’s little-used basement bathroom, using a space heater and hot shower to vary the temperature and humidity.

The findings corroborated the initial result, and they embarked on a larger-scale test.

“You can’t write an article for Physics Today where the data has come from a setup on the top of the toilet tank in one of the author’s bathrooms,” Durran said.

Univ. of Washington

A test subject being weighed to measure the amount of condensation. The cap prevents air from moving through the opening on top.

First they recruited colleagues in Frierson’s beachside hometown of Wilmington, North Carolina, to duplicate the experiment and compare results with those taken on a hot, dry Seattle day. But they decided they needed to test a wider range of conditions.

Finally, last summer undergraduates Stella Choi and Steven Brey joined the project to run a proper experiment in the UW Atmospheric Sciences building. They unearthed an experimental machine with styling that looks to be from the 1950s, last used decades ago to simulate cloud formation.

With funding for educational outreach from the National Science Foundation, the students first cooled a can in a bucket of ice water then dried it and placed it in the experimental chamber dialed up to the appropriate conditions. After five minutes they removed the can, weighed it to measure the amount of condensation, and recorded the final temperature of the water inside.

The phenomenon at work – latent heat of condensation – is central to Frierson’s research on water vapor, heat transfer and global climate change.

“We expect a much moister atmosphere with global warming because warmer air can hold a lot more water vapor,” Frierson said. Because heat is transferred when water evaporates or condenses, this change affects wind circulation, weather patterns and storm formation.

Durran’s research includes studies of thunderstorms, which are powered by heat released from condensation in rising moist air.

As for his demonstration of the heat released during this process, he and Frierson are now working with the National Center for Atmospheric Research to develop an educational tool that will let students around the world try the experiment and post their results online for comparison.

The example promises to become as classic as a cold drink on a hot summer day.

For more information, contact Durran at 206-543-7440 or durrand@atmos.washington.edu and Frierson at 206-685-7364 or dargan@atmos.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>