Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining forces globally against drug resistant bacteria

03.04.2014

Antibiotics have saved millions of lives from once deadly infectious diseases. But, misuse of antibiotics and other antimicrobials in humans and animals has led to bacteria evolving resistance.

Today, 3 April 2013 in Brussels, the Joint Programme on Antimicrobial Resistance (JPIAMR) presented its strategic research agenda which outlines the steps that need to be taken to minimise antimicrobial resistance, one of today’s most serious public health threats.

In addition to the 19 countries which include European countries as well as Canada and Israel, already signed up to this initiative, JPIAMR received support from countries ranging from Australia to South Africa during this meeting.

“It’s a worldwide concern that resistance to antimicrobial drugs, which have allowed us to treat or prevent deadly infections and save many lives, especially children, is now spreading all over the world at increased speed, related with the increased mobility of people.

It’s therefore crucial to immediately join forces under one research agenda to achieve a substantial and rapid impact, especially on global health threats like HIV/AIDS, TB and malaria”, said Fulvio Esposito from the Italian Ministry for Education, University and Research.

Coming together globally is indeed crucial as the problem of antimicrobial resistance is so wide that the world now seems to be entering a post-antibiotic era in which sophisticated clinical interventions such as organ transplants, cancer chemotherapy or care for pre-term infants will become far more difficult due the threats of infections with multi-drug resistant bacteria.

Resistance is so widespread that for some groups of bacteria, few antibiotics are effective enough anymore for therapy.

The Strategic Research Agenda (SRA)
JPIAMR has identified six priority topics which form a Strategic Research Agenda (SRA). These topics will give the fight against antibiotic resistance a multidimensional approach. The idea is that these approaches will be translated into new prevention and intervention strategies that improve the public health and wellbeing of populations and delivers economic and societal benefits throughout Europe and beyond.

1. Therapeutics: Improvement of current antibiotics and development of new antibiotics and alternatives for antibiotics, such as vaccines.

2. Diagnostics: Improvement of diagnostics and development of new (rapid) diagnostics to stimulate better use of current antibiotics and support the development and use of new antibiotics and alternatives to antibiotics.

3. Surveillance: Establishment of an international, standardised surveillance programme for AMR and antibiotic use in human, and agricultural settings.

4. Transmission: A comprehensive, multi-disciplinary understanding of the transmission mechanisms by which antibiotic resistance can spread between bacterial populations and between different (animal and human) reservoirs and to translate this knowledge into the development of evidence-based strategies to minimize the spread of resistance.

5. Environment: Assessment of the contribution of pollution of the environment with antibiotics, antibiotic residues and resistant bacteria on the spread of AMR and the development of strategies to minimize environmental contamination by antibiotics and resistant bacteria.

6. Interventions: Study of preventative and control interventions that focus on improved antibiotic stewardship, compliance and prevention of transmission of AMR and to determine and improve their efficacy.

“As this is an active research field and AMR is a very real and present societal challenge, the strategic research agenda will need to stay a living document that is continuously updated to keep pace with developments within research and society, “said Mats Ulfendahl, Swedish Research Council.

Operating at all relevant levels, from the scientific community to research funders and from policy makers and societal stakeholders to industry and SMEs, is the only way to reduce the inappropriate use of antibiotic use both in humans and animals to stop this trend from continuing and to ultimately find a more sustainable way to use antibiotics and treat disease.

Therefore, assisted by European Commission funding, the International Medicines Initiative (IMI), national funding contributions and public-private partnerships, the next step for JPIAMR is to fund research which fit within the six priority areas and which will contribute towards solving the AMR problem.

For more information contact:
Laura Marin, Project Manager, Swedish Research Council, laura.marin@vr.se
Phone: +46 8 546 44 119

Sofia Kuhn, Communications Manager, sofia.kuhn@muninnscience.com
Phone: +32 486 67 39 42

Why JPIAMR?

• Antimicrobial resistance is a real threat to the lives of European citizens.
• Research of antimicrobial resistance in Europe is fragmented and few countries have specific programs dedicated to this field of research.
• 19 Member states have joined forces in the Joint Programme Initiative on Antimicrobial Resistance (JPIAMR) to coordinate the research, in order to allow greater impact and avoid duplication.
• Only by bringing together industry, public health and academic bodies to share experiences and resources across scientific disciplines will we be able to create long term reduction of antimicrobial resistance in Europe.

Aims

• JPIAMR will develop scientific proposals which will lead to sustainable use of antibiotics to treat infectious diseases and to a decrease in the number of patients with resistant infections in Europe.
• It aims to integrate relevant scientific fields across national borders and to create a common Strategic Research Agenda with a shared common vision where the best resources and capabilities are coordinated.
• JPIAMR provides the forum and platform for initiating and coordinating joint actions with stakeholders beyond issuing joint calls.

Objectives

• Find routes for novel antibiotics and new anti-infectious strategies.
• Scientifically validate means to increase the number of patients treated early with the appropriate antimicrobial.
• Provide scientific evidence on ways to reduce the spread of resistant strains.
• Provide scientific evidence on strategies to reduce the number of patients with resistant or MDR strains, at any level of antibiotic consumption.
• Reduce the consumption of antibiotics.

What is joint programming?
Research efforts can be essential to address major societal challenges. In some cases these are so great that national research programmes cannot tackle them effectively on their own. In addition, the vast bulk of research programmes in Europe are run in an isolated way, leading to unwanted fragmentation or ineffectiveness. Joint programming aims to remedy this situation.
Joint programmes aim to pool national research efforts in order to make better use of Europe’s public R&D resources and to tackle common European challenges more effectively in a few key areas.
The ultimate objective is to overcome the fragmentation of national research programmes to address global challenges.
More information www.jpiamr.eu

Weitere Informationen:

http://www.jpiamr.eu project website
http://www.jpiamr.eu/wp-content/uploads/2014/01/JPIAMR-SRA-v1.pdf The Strategic Research Agenda (SRA)

Sofia Kuhn | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>