Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Neuroscientist’s Goal: A Prosthetic Limb with Feeling

09.09.2010
Back in 1980 when The Empire Strikes Back hit the big screen, it seemed like the most fantastic of science fiction scenarios: Luke Skywalker getting a fully functional bionic arm to replace the one he had lost to archenemy Darth Vader.

Thirty years later, such a device is more the stuff of fact and less of fiction, as increasingly sophisticated artificial limbs are being developed that allow users a startlingly lifelike range of motion and fine motor control.

Johns Hopkins neuroscientist Steven Hsiao, however, isn’t satisfied that a prosthetic limb simply allows its user to grasp or move something. He wants to provide the user the ability to feel what the artificial limb is touching, such as the texture and shape of a quarter, or experience the comforting perception of holding hands. Accomplishing these goals requires understanding how the brain processes the multitude of sensations that come in daily through our fingers and hands.

Using a $600,000 grant administered through the federal stimulus package, Hsiao is leading a team that is working to decode those sensations, which could lead to the development of truly “bionic” hands and arms that use sensitive electronics to activate neurons in the touch centers of the cerebral cortex.

“The truth is, it is still a huge mystery how we humans use our hands to move about in the world and interact with our environment,” said Hsiao, of the university’s Zanvyl Krieger Mind/Brain Institute. “How we reach into our pockets and grab our car keys or some change without looking requires that the brain analyze the inputs from our hands and extract information about the size, shape and texture of objects. How the brain accomplishes this amazing feat is what we want to find out and understand.”

Hsiao hypothesizes that our brains do this by transforming the inputs from receptors in our fingers and hands into “neural code” that the brain then matches against a stored, central “databank” of memories of those objects. When a match occurs, the brain is able to perceive and recognize what the hand is feeling, experiencing and doing.

In recent studies, Hsiao’s team found that neurons in the area of the brain that respond to touch are able to “code for” (understand) the orientation of bars pressed against the skin, the speed and direction of motion, and curved edges of objects. In their stimulus-funded study, Hsiao’s team will investigate the detailed neural codes for more complex shapes, and will delve into how the perception of motion in the visual system is integrated with the perception of tactile motion.

The team will do this by first investigating how complex shapes are processed in the somatosensory cortex (the part of the brain that responds to touch) and second, by studying the responses of individual neurons in an area that has traditionally been associated with visual motion but appears to also have neurons that respond to tactile motion (motion of things moving across your skin).

“The practical goal of all of this is to find ways to restore normal sensory function to patients whose hands have been damaged, or to amputees with prosthetic or robotic arms and hands,” Hsiao said. “It would be fantastic if we could use electric stimulation to activate the same brain pathways and neural codes that are normally used in the brain. I believe that these neural coding studies will provide a basic understanding of how signals should be fed back into the brain to produce the rich percepts that we normally receive from our hands.”

Hsiao’s team’s investigations are among the 451 stimulus-funded research grants and supplements totaling more than $214.3 million that Johns Hopkins has won since Congress passed the American Recovery and Reinvestment Act of 2009. That law, informally known by the acronym ARRA, gave the National Institutes of Health and the National Science Foundation $12.4 billion in extra money to underwrite research grants by September 2010. The stimulus package is part of the federal government’s attempt to bring back a stumbling economy by distributing dollars for transportation projects, infrastructure building, the development of new energy sources and job creation, and financing research that will benefit humankind.

Johns Hopkins scientists have submitted about 1,500 proposals for stimulus-funded investigations, ranging from strategies to help recovering addicts stay sober and the role that certain proteins play in the development of muscular dystrophy to mouse studies seeking to understand how men and women differ in their response to the influenza virus.

As of Aug. 31, 167 staff jobs have been created at Johns Hopkins directly from ARRA funding, not counting jobs saved when other grants ran out and not counting faculty and grad student positions supported by the ARRA grants.

Related websites:

http://krieger.jhu.edu/mbi/research/Hsiao
http://Krieger.jhu.edu/mbi/hsiaolab

Lisa De Nike | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>