Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Neuroscientist’s Goal: A Prosthetic Limb with Feeling

09.09.2010
Back in 1980 when The Empire Strikes Back hit the big screen, it seemed like the most fantastic of science fiction scenarios: Luke Skywalker getting a fully functional bionic arm to replace the one he had lost to archenemy Darth Vader.

Thirty years later, such a device is more the stuff of fact and less of fiction, as increasingly sophisticated artificial limbs are being developed that allow users a startlingly lifelike range of motion and fine motor control.

Johns Hopkins neuroscientist Steven Hsiao, however, isn’t satisfied that a prosthetic limb simply allows its user to grasp or move something. He wants to provide the user the ability to feel what the artificial limb is touching, such as the texture and shape of a quarter, or experience the comforting perception of holding hands. Accomplishing these goals requires understanding how the brain processes the multitude of sensations that come in daily through our fingers and hands.

Using a $600,000 grant administered through the federal stimulus package, Hsiao is leading a team that is working to decode those sensations, which could lead to the development of truly “bionic” hands and arms that use sensitive electronics to activate neurons in the touch centers of the cerebral cortex.

“The truth is, it is still a huge mystery how we humans use our hands to move about in the world and interact with our environment,” said Hsiao, of the university’s Zanvyl Krieger Mind/Brain Institute. “How we reach into our pockets and grab our car keys or some change without looking requires that the brain analyze the inputs from our hands and extract information about the size, shape and texture of objects. How the brain accomplishes this amazing feat is what we want to find out and understand.”

Hsiao hypothesizes that our brains do this by transforming the inputs from receptors in our fingers and hands into “neural code” that the brain then matches against a stored, central “databank” of memories of those objects. When a match occurs, the brain is able to perceive and recognize what the hand is feeling, experiencing and doing.

In recent studies, Hsiao’s team found that neurons in the area of the brain that respond to touch are able to “code for” (understand) the orientation of bars pressed against the skin, the speed and direction of motion, and curved edges of objects. In their stimulus-funded study, Hsiao’s team will investigate the detailed neural codes for more complex shapes, and will delve into how the perception of motion in the visual system is integrated with the perception of tactile motion.

The team will do this by first investigating how complex shapes are processed in the somatosensory cortex (the part of the brain that responds to touch) and second, by studying the responses of individual neurons in an area that has traditionally been associated with visual motion but appears to also have neurons that respond to tactile motion (motion of things moving across your skin).

“The practical goal of all of this is to find ways to restore normal sensory function to patients whose hands have been damaged, or to amputees with prosthetic or robotic arms and hands,” Hsiao said. “It would be fantastic if we could use electric stimulation to activate the same brain pathways and neural codes that are normally used in the brain. I believe that these neural coding studies will provide a basic understanding of how signals should be fed back into the brain to produce the rich percepts that we normally receive from our hands.”

Hsiao’s team’s investigations are among the 451 stimulus-funded research grants and supplements totaling more than $214.3 million that Johns Hopkins has won since Congress passed the American Recovery and Reinvestment Act of 2009. That law, informally known by the acronym ARRA, gave the National Institutes of Health and the National Science Foundation $12.4 billion in extra money to underwrite research grants by September 2010. The stimulus package is part of the federal government’s attempt to bring back a stumbling economy by distributing dollars for transportation projects, infrastructure building, the development of new energy sources and job creation, and financing research that will benefit humankind.

Johns Hopkins scientists have submitted about 1,500 proposals for stimulus-funded investigations, ranging from strategies to help recovering addicts stay sober and the role that certain proteins play in the development of muscular dystrophy to mouse studies seeking to understand how men and women differ in their response to the influenza virus.

As of Aug. 31, 167 staff jobs have been created at Johns Hopkins directly from ARRA funding, not counting jobs saved when other grants ran out and not counting faculty and grad student positions supported by the ARRA grants.

Related websites:

http://krieger.jhu.edu/mbi/research/Hsiao
http://Krieger.jhu.edu/mbi/hsiaolab

Lisa De Nike | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>