Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensive therapy halves kidney disease in type 1 diabetes

14.11.2011
NIH-funded study shows long-term benefits

Controlling blood glucose early in the course of type 1 diabetes yields huge dividends, preserving kidney function for decades. The new finding from a study funded by the National Institutes of Health was published online in the New England Journal of Medicine Nov. 12 to coincide with presentation at a scientific meeting.

Compared to conventional therapy, near-normal control of blood glucose beginning soon after diagnosis of type 1 diabetes and continuing an average six and a half years reduced by half the long-term risk of developing kidney disease, according to the Diabetes Control and Complications Trial (DCCT) and Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. The risk of kidney failure was also halved, but the difference was not statistically significant, perhaps due to the relatively small total number of patients who reached that stage of the disease.

Participants entered the DCCT on average six years after onset of diabetes when complications of diabetes were absent or very mild. Half aimed for near-normal glucose control (intensive therapy) and the others received what was then standard glucose control. After an average 22-year follow-up, 24 in the intensive group developed significantly reduced kidney function and 8 progressed to kidney failure requiring dialysis or transplantation. On conventional therapy, 46 developed kidney disease, with kidney failure in 16.

The landmark DCCT demonstrated that intensive control reduced early signs of eye, kidney and nerve damage and is the basis for current guidelines for diabetes therapy. However, the initial kidney findings were based on reductions in urine protein, a sign of kidney damage but not a measure of kidney function. Preventing a loss of kidney function and reducing kidney failure had not been proven.

Since the DCCT ended in 1993, all participants have tried to maintain excellent diabetes control and have achieved similar glucose levels. The new finding emphasizes the importance of good control of type 1 diabetes soon after diagnosis.

"Achieving near-normal glucose levels in type 1 diabetes can be challenging. But our study provides strong evidence that reinforces the benefits of reaching the goal as early as possible to slow or prevent kidney disease and other complications," said first author Ian H. de Boer, M.D., a kidney specialist at the University of Washington, Seattle. He is scheduled to present the findings Nov. 12, 2011, at the American Society of Nephrology's annual meeting in Philadelphia.

The DCCT, conducted from 1983 to 1993 in 1,441 people with type 1 diabetes, found that intensive glucose control was superior to conventional control in delaying or preventing complications overall. EDIC continues to follow 1,375 DCCT participants to determine the long-term effects of the therapies beyond the initial treatment period. Other reports have bolstered support for intensive treatment to reduce the risk of heart disease, stroke and eye and nerve damage associated with diabetes.

"The DCCT and EDIC studies illustrate the value of long-term studies. The full benefit of treatment may not be seen for decades, especially for complications of diabetes, such as kidney disease, which can progress slowly but have devastating consequences," said Griffin P. Rodgers, M.D., director of the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), which oversaw the research. "Not only has NIH-sponsored research shown the benefits of early glucose control, it has provided new tools to help people with type 1 diabetes achieve that control and live longer and healthier lives."

The DCCT compared intensive to conventional control of blood glucose in people with type 1 diabetes. At the time, conventional treatment was one or two insulin injections a day with daily urine or blood glucose testing. Participants randomly assigned to intensive treatment were asked to keep glucose levels as near normal as possible. That meant trying to keep hemoglobin A1c (A1C) readings at 6 percent or less with at least three insulin injections a day or an insulin pump, guided by frequent self-monitoring of blood glucose. (A1C reflects average blood glucose over the previous two to three months.)

Nearly 26 million Americans have diabetes. In adults, type 1 diabetes accounts for 5 to 10 percent of all diagnosed cases of the disease. Formerly called juvenile-onset or insulin-dependent diabetes, type 1 diabetes develops when the body's immune system destroys pancreatic beta cells, the only cells in the body that make the hormone insulin that regulates blood glucose. Type 1 diabetes usually arises in children and young adults but can occur at any age. Management involves keeping blood glucose levels as close to normal as possible with three or more insulin injections a day or treatment with an insulin pump, careful monitoring of glucose, and close attention to diet and exercise.

Type 2 diabetes, or adult-onset diabetes, accounts for about 90 to 95 percent of all diabetes diagnosed in adults. It usually begins as insulin resistance, a disorder in which the cells do not use insulin properly. As the need for insulin rises, the pancreas gradually loses its ability to produce it. Type 2 diabetes is associated with older age, obesity, family history of diabetes, history of gestational diabetes, impaired glucose metabolism, physical inactivity, and race/ethnicity. African-Americans, Hispanic/Latino-Americans, American Indians, and some Asian-Americans and Native Hawaiians or other Pacific Islanders are at particularly high risk for type 2 diabetes and its complications.

Chronic kidney disease can lead to kidney failure, also called end-stage renal disease, requiring dialysis or a kidney transplant for survival. Chronic kidney disease affects more than 10 percent of Americans over age 20 and 35 percent of those over age 20 with diabetes. People with diabetes and chronic kidney disease account for 26.1 percent, or $18 billion, of Medicare costs for diabetes. Diabetes is the leading cause of kidney failure, accounting for nearly 38 percent (215,000) of Americans on dialysis or living with a kidney transplant. Each year 110,000 patients in the United States start treatment for kidney failure. These lifesaving treatments cost $42.5 billion annually.

The DCCT is registered as NCT00360815, and EDIC is registered as NCT00360893 in clinicaltrials.gov. NIDDK and other NIH components supporting DCCT/EDIC are the National Eye Institute, the National Institute of Neurological Disorders and Stroke and the National Center for Research Resources. Genentech contributed to the DCCT/EDIC through a Cooperative Research and Development Agreement with the NIDDK. Lifescan, Roche, Aventis, Eli Lilly, Omnipod, Can-Am, B-D, Animas, Medtronic, Medtronic Minimed, Bayer and Omron contributed free or discounted supplies to the DCCT/EDIC.

The NIDDK, a component of the NIH, conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition and obesity; and kidney, urologic and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe and disabling conditions affecting Americans. For more information about the NIDDK and its programs, see http://www.niddk.nih.gov. Education programs for diabetes and kidney disease offer information and resources for patients and health professionals.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Mary M. Harris | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>