Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative implants benefit both patients and caregivers

Researchers at Mid Sweden University, together with Professor Jan Hirsch and Consultant Per Dérand, oral & maxillofacial surgeons at Uppsala University Hospital and Mälarsjukhuset Hospital, respectively, have developed an entirely new method for individually adapted implants.

The method provides better patient safety and lower costs. It involves planning, design, and production. At the end of October the first implants were operated in at University Hospital in Uppsala.

"With individually adapted implants, you minimize the time needed for adjustment and adaptation of the implant during the operation itself. Work that was previously done during the operation is now done in advance, on a computer.

This means that the operation time can be reduced. But the hypoxia time, that is, the time the transplant has no supply of oxygen, is reduced for the transplant in that it is finished before the blood circulation is cut off. With this type of digital planning and production method we also see a potential for making entirely new types of implants and prostheses that don't exist today," says Lars-Erik Rännar, who does research in sports technology at Mid Sweden University.

In brief, the method involves planning complicated jaw reconstruction in advance, using a computer. The patient's anatomy is determined with the use of x-rays, with the images forming the basis of a three-dimensional model of the patient. With the help of the model, the operation is planned, along with the design of the implant and other aids that are needed for the operation. The digital models are then used as a basis for manufacturing the implant at Mid Sweden University's laboratory for additive manufacturing technology, which is unique in the world. The technology functions like a three-dimensional printer where the results are solid details made of bio-compatible titanium.

"When it comes to medical applications, we have previously worked with design and production methods for hip implants," says Lars-Erik Rännar. "What's special about this project is that we have arrived at a well-developed method very quickly, and everyone involved believes it has a very exciting future. The benefits for patients and caregivers are tremendous."

Questions can be directed to:

Lars-Erik Rännar, Mid Sweden University, Campus Östersund, mobile: +46 (0)70-675 7995

Jan Hirsch, Uppsala University Hospital, mobile: +46 (0)70-394 8323

Per Dérand, Mälarsjukhuset Hospital, Eskilstuna, mobile: +46 (0)73-822 8002

Pressofficer Lars Aronsson,; +46-70 516 5336

Lars Aronsson | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>