Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How infection can lead to cancer

12.06.2012
New MIT study offers comprehensive look at chemical and genetic changes that occur as inflammation progresses to cancer

One of the biggest risk factors for liver, colon or stomach cancer is chronic inflammation of those organs, often caused by viral or bacterial infections. A new study from MIT offers the most comprehensive look yet at how such infections provoke tissues into becoming cancerous.

The study, which is appearing in the online edition of Proceedings of the National Academy of Sciences the week of June 11, tracked a variety of genetic and chemical changes in the livers and colons of mice infected with Helicobacter hepaticus, a bacterium similar to Helicobacter pylori, which causes stomach ulcers and cancer in humans.

The findings could help researchers develop ways to predict the health consequences of chronic inflammation, and design drugs to halt such inflammation.

"If you understand the mechanism, then you can design interventions," says Peter Dedon, an MIT professor of biological engineering. "For example, what if we develop ways to block or interrupt the toxic effects of the chronic inflammation?"

Dedon is one of four senior authors of the paper, along with Steven Tannenbaum, a professor of biological engineering and chemistry; James Fox, a professor of biological engineering and director of the Department of Comparative Medicine; and Gerald Wogan, a professor of biological engineering and chemistry. Lead author is Aswin Mangerich, a former MIT postdoc now at the University of Konstanz in Germany.

Too much of a good thing

For the past 30 years, Tannenbaum has led a group of MIT researchers dedicated to studying the link between chronic inflammation and cancer. Inflammation is the body's normal reaction to any kind of infection or damage, but when it goes on for too long, tissues can be damaged.

When the body's immune system detects pathogens or cell damage, it activates an influx of cells called macrophages and neutrophils. These cells' job is to engulf bacteria, dead cells and debris: proteins, nucleic acids and other molecules released by dead or damaged cells. As part of this process, the cells produce highly reactive chemicals that help degrade the bacteria.

"In doing this, in engulfing the bacteria and dumping these reactive chemicals on them, the chemicals also diffuse out into the tissue, and that's where the problem comes in," Dedon says.

If sustained over a long period, that inflammation can eventually lead to cancer. A recent study published in the journal The Lancet found that infections account for about 16 percent of new cancer cases worldwide.

Widespread damage

In the new MIT study, the researchers analyzed mice that were infected with H. hepaticus, which causes them to develop a condition similar to inflammatory bowel disease in humans. Over the course of 20 weeks, the mice developed chronic infections of the liver and colon, with some of the mice developing colon cancer.

Throughout the 20-week period, the researchers measured about a dozen different types of damage to DNA, RNA and proteins. They also examined tissue damage and measured which genes were turned on and off as the infection progressed. One of their key findings was that the liver and colon responded differently to infection.

In the colon, but not the liver, neutrophils secreted hypochlorous acid (also found in household bleach), which significantly damages proteins, DNA and RNA by adding a chlorine atom to them. The hypochlorous acid is meant to kill bacteria, but it also leaks into surrounding tissue and damages the epithelial cells of the colon.

The researchers found that levels of one of the chlorine-damage products in DNA and RNA, chlorocytosine, correlated well with the severity of the inflammation, which could allow them to predict the risk of chronic inflammation in patients with infections of the colon, liver or stomach. Tannenbaum recently identified another chlorine-damage product in proteins: chlorotyrosine, which correlates with inflammation. While these results point to an important role for neutrophils in inflammation and cancer, "we don't know yet if we can predict the risk for cancer from these damaged molecules," Dedon says.

Another difference the researchers found between the colon and the liver was that DNA repair systems became more active in the liver but less active in the colon, even though both were experiencing DNA damage. "It's possible that we have kind of a double whammy [in the colon]. You have this bacterium that suppresses DNA repair, at the same time that you have all this DNA damage happening in the tissue as a result of the immune response to the bacterium," Dedon says.

The researchers also identified several previously unknown types of damage to DNA in mice and humans, one of which involves oxidation of guanine, a building block of DNA, to two new products, spiroiminodihydantoin and guanidinohydanotoin.

In future studies, the MIT team plans to investigate the mechanisms of cancer development in more detail, including looking at why cells experience an increase in some types of DNA damage but not others.

The research was funded by the National Cancer Institute.

Written by Anne Trafton, MIT News Office

Anne Trafton | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>