Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How infection can lead to cancer

12.06.2012
New MIT study offers comprehensive look at chemical and genetic changes that occur as inflammation progresses to cancer

One of the biggest risk factors for liver, colon or stomach cancer is chronic inflammation of those organs, often caused by viral or bacterial infections. A new study from MIT offers the most comprehensive look yet at how such infections provoke tissues into becoming cancerous.

The study, which is appearing in the online edition of Proceedings of the National Academy of Sciences the week of June 11, tracked a variety of genetic and chemical changes in the livers and colons of mice infected with Helicobacter hepaticus, a bacterium similar to Helicobacter pylori, which causes stomach ulcers and cancer in humans.

The findings could help researchers develop ways to predict the health consequences of chronic inflammation, and design drugs to halt such inflammation.

"If you understand the mechanism, then you can design interventions," says Peter Dedon, an MIT professor of biological engineering. "For example, what if we develop ways to block or interrupt the toxic effects of the chronic inflammation?"

Dedon is one of four senior authors of the paper, along with Steven Tannenbaum, a professor of biological engineering and chemistry; James Fox, a professor of biological engineering and director of the Department of Comparative Medicine; and Gerald Wogan, a professor of biological engineering and chemistry. Lead author is Aswin Mangerich, a former MIT postdoc now at the University of Konstanz in Germany.

Too much of a good thing

For the past 30 years, Tannenbaum has led a group of MIT researchers dedicated to studying the link between chronic inflammation and cancer. Inflammation is the body's normal reaction to any kind of infection or damage, but when it goes on for too long, tissues can be damaged.

When the body's immune system detects pathogens or cell damage, it activates an influx of cells called macrophages and neutrophils. These cells' job is to engulf bacteria, dead cells and debris: proteins, nucleic acids and other molecules released by dead or damaged cells. As part of this process, the cells produce highly reactive chemicals that help degrade the bacteria.

"In doing this, in engulfing the bacteria and dumping these reactive chemicals on them, the chemicals also diffuse out into the tissue, and that's where the problem comes in," Dedon says.

If sustained over a long period, that inflammation can eventually lead to cancer. A recent study published in the journal The Lancet found that infections account for about 16 percent of new cancer cases worldwide.

Widespread damage

In the new MIT study, the researchers analyzed mice that were infected with H. hepaticus, which causes them to develop a condition similar to inflammatory bowel disease in humans. Over the course of 20 weeks, the mice developed chronic infections of the liver and colon, with some of the mice developing colon cancer.

Throughout the 20-week period, the researchers measured about a dozen different types of damage to DNA, RNA and proteins. They also examined tissue damage and measured which genes were turned on and off as the infection progressed. One of their key findings was that the liver and colon responded differently to infection.

In the colon, but not the liver, neutrophils secreted hypochlorous acid (also found in household bleach), which significantly damages proteins, DNA and RNA by adding a chlorine atom to them. The hypochlorous acid is meant to kill bacteria, but it also leaks into surrounding tissue and damages the epithelial cells of the colon.

The researchers found that levels of one of the chlorine-damage products in DNA and RNA, chlorocytosine, correlated well with the severity of the inflammation, which could allow them to predict the risk of chronic inflammation in patients with infections of the colon, liver or stomach. Tannenbaum recently identified another chlorine-damage product in proteins: chlorotyrosine, which correlates with inflammation. While these results point to an important role for neutrophils in inflammation and cancer, "we don't know yet if we can predict the risk for cancer from these damaged molecules," Dedon says.

Another difference the researchers found between the colon and the liver was that DNA repair systems became more active in the liver but less active in the colon, even though both were experiencing DNA damage. "It's possible that we have kind of a double whammy [in the colon]. You have this bacterium that suppresses DNA repair, at the same time that you have all this DNA damage happening in the tissue as a result of the immune response to the bacterium," Dedon says.

The researchers also identified several previously unknown types of damage to DNA in mice and humans, one of which involves oxidation of guanine, a building block of DNA, to two new products, spiroiminodihydantoin and guanidinohydanotoin.

In future studies, the MIT team plans to investigate the mechanisms of cancer development in more detail, including looking at why cells experience an increase in some types of DNA damage but not others.

The research was funded by the National Cancer Institute.

Written by Anne Trafton, MIT News Office

Anne Trafton | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>