Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying dangerous infections early

16.10.2013
Harmful bacteria can colonize artificial joints or other implants in the body. Researchers from Würzburg and the Netherlands have developed a method for detecting such infections early.

Staphylococci are bacteria that are particularly feared in hospitals. This is because a staphylococcal infection can be life-threatening for patients whose immune system is weakened, as is the case, for example, after a major procedure such as an organ transplant. Staphylococci pose special problems since they are also resistant to various antibiotics.


Evidence of a staphylococcal infection in the leg muscle of a mouse with the new fluorescent agent vanco-800CW. A fluorescence signal can be seen beneath the pelvis of the animal because the agent collects in the bladder before it is excreted in urine.

Image: Kevin P. Francis, Caliper (Alameda, California, USA)

Such infections are also dangerous for patients who receive artificial joints, for instance, or other implants. With implants, in particular, there is a risk of the bacteria forming so-called biofilms on top of them: the microbes surround themselves with a mucus sheath, which protects them very well against medication.

Possible consequences of an infection

“If an infection of this kind gets out of hand, the implant may have to be surgically removed again,” says Knut Ohlsen from the Institute for Molecular Infection Biology at the University of Würzburg. After that, the infected region is “remediated” before a new implant can be inserted. All in all, this is a lengthy process and one that is very stressful for the patient.

So, it is important to identify implant infections as early as possible. Now, for the first time, research teams from the University of Groningen in the Netherlands are presenting a suitable method in the journal “Nature Communications”. Knut Ohlsen and Tina Schäfer from the University of Würzburg helped develop it.

How the new “tracker” works

The scientists have developed an agent that could be described as a “fluorescent tracker”: it locates even the smallest quantities of harmful staphylococci in the body and marks them so that they can be identified from outside with a special camera. The “tracker” is the common antibiotic Vancomycin coupled to a new fluorescent dye.

The technique has proven its suitability in experiments with mice. If it can also be used in humans, it may be possible to avoid implant infections and secondary operations in the future: if there are any signs of an infection after an implant has been inserted, such as a fever or abnormal protein in the blood, the “tracker” could be administered to the patient as a contrast agent. Then, using a video camera that records the agent’s fluorescence signals, the location and extent of the infection could be determined immediately and countermeasures introduced.

The new agent called vanco-800CW is now set to be developed further for use in humans under the direction of the Dutch researchers. Corresponding clinical trials are being planned.

What was done in Würzburg

As part of the project, Tina Schäfer and Knut Ohlsen examined the suitability of the new agent. Which bacteria does the fluorescence-labeled Vancomycin provide any evidence of and how well can its fluorescence be shown with different detection techniques? These questions were answered in Würzburg. Fluorescence imaging is a focus of research activity at the Institute for Molecular Infection Biology. The work is funded by the German Research Foundation (DFG) in Transregional Collaborative Research Center 34.

“Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labeled vancomycin”, Marleen van Oosten, Tina Schäfer, Joost A.C. Gazendam, Knut Ohlsen, Eleni Tsompanidou, Marcus C. de Goffau, Hermie J.M. Harmsen, Lucia M.A. Crane, Ed Lim, Kevin P. Francis, Lael Cheung, Michael Olive, Vasilis Ntziachristos, Jan Maarten van Dijl, Gooitzen M. van Dam. Nature Communications, 15 October 2013, DOI: 10.1038/ncomms3584

Contact

Dr. Knut Ohlsen, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-82155, knut.ohlsen@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>