Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying dangerous infections early

16.10.2013
Harmful bacteria can colonize artificial joints or other implants in the body. Researchers from Würzburg and the Netherlands have developed a method for detecting such infections early.

Staphylococci are bacteria that are particularly feared in hospitals. This is because a staphylococcal infection can be life-threatening for patients whose immune system is weakened, as is the case, for example, after a major procedure such as an organ transplant. Staphylococci pose special problems since they are also resistant to various antibiotics.


Evidence of a staphylococcal infection in the leg muscle of a mouse with the new fluorescent agent vanco-800CW. A fluorescence signal can be seen beneath the pelvis of the animal because the agent collects in the bladder before it is excreted in urine.

Image: Kevin P. Francis, Caliper (Alameda, California, USA)

Such infections are also dangerous for patients who receive artificial joints, for instance, or other implants. With implants, in particular, there is a risk of the bacteria forming so-called biofilms on top of them: the microbes surround themselves with a mucus sheath, which protects them very well against medication.

Possible consequences of an infection

“If an infection of this kind gets out of hand, the implant may have to be surgically removed again,” says Knut Ohlsen from the Institute for Molecular Infection Biology at the University of Würzburg. After that, the infected region is “remediated” before a new implant can be inserted. All in all, this is a lengthy process and one that is very stressful for the patient.

So, it is important to identify implant infections as early as possible. Now, for the first time, research teams from the University of Groningen in the Netherlands are presenting a suitable method in the journal “Nature Communications”. Knut Ohlsen and Tina Schäfer from the University of Würzburg helped develop it.

How the new “tracker” works

The scientists have developed an agent that could be described as a “fluorescent tracker”: it locates even the smallest quantities of harmful staphylococci in the body and marks them so that they can be identified from outside with a special camera. The “tracker” is the common antibiotic Vancomycin coupled to a new fluorescent dye.

The technique has proven its suitability in experiments with mice. If it can also be used in humans, it may be possible to avoid implant infections and secondary operations in the future: if there are any signs of an infection after an implant has been inserted, such as a fever or abnormal protein in the blood, the “tracker” could be administered to the patient as a contrast agent. Then, using a video camera that records the agent’s fluorescence signals, the location and extent of the infection could be determined immediately and countermeasures introduced.

The new agent called vanco-800CW is now set to be developed further for use in humans under the direction of the Dutch researchers. Corresponding clinical trials are being planned.

What was done in Würzburg

As part of the project, Tina Schäfer and Knut Ohlsen examined the suitability of the new agent. Which bacteria does the fluorescence-labeled Vancomycin provide any evidence of and how well can its fluorescence be shown with different detection techniques? These questions were answered in Würzburg. Fluorescence imaging is a focus of research activity at the Institute for Molecular Infection Biology. The work is funded by the German Research Foundation (DFG) in Transregional Collaborative Research Center 34.

“Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labeled vancomycin”, Marleen van Oosten, Tina Schäfer, Joost A.C. Gazendam, Knut Ohlsen, Eleni Tsompanidou, Marcus C. de Goffau, Hermie J.M. Harmsen, Lucia M.A. Crane, Ed Lim, Kevin P. Francis, Lael Cheung, Michael Olive, Vasilis Ntziachristos, Jan Maarten van Dijl, Gooitzen M. van Dam. Nature Communications, 15 October 2013, DOI: 10.1038/ncomms3584

Contact

Dr. Knut Ohlsen, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-82155, knut.ohlsen@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>