Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hydrogen Peroxide Marshals Immune System

Using the zebrafish as an animal model, researchers have discovered that the body uses hydrogen peroxide to sound the alarm when a tissue has been injured. As a direct result of this hydrogen-peroxide red alert, white blood cells come to the aid of the wounded site.
Prior research has indicated that white blood cells produce hydrogen peroxide to kill bacteria, but never before has it been know to act as a kind of “first responder” that alerts healing cells to bodily trauma. This is important because scientists know very little about how tissue detects that it’s been damaged, and what sorts of signals it sends as a result. Although these findings occurred in zebrafish, they offer new ways to begin thinking about certain human conditions, like asthma, which are associated with elevated levels of hydrogen peroxide and white blood cells in the affected areas.
Timothy Mitchison, professor of systems biology, Harvard Medical School,
When you were a kid your mom poured it on your scraped finger to stave off infection. When you got older you might have even used it to bleach your hair. Now there’s another possible function for this over-the-counter colorless liquid: your body might be using hydrogen peroxide as an envoy that marshals troops of healing cells to wounded tissue.

Using the zebrafish as an animal model, researchers in the lab of Harvard Medical School professor of systems biology Timothy Mitchison and Dana Farber Cancer Institute professor Thomas Look have discovered that when the tail fins of these creatures are injured, a burst of hydrogen peroxide is released from the wound and into the surrounding tissue. Teams of rescue-working white blood cells respond to this chemical herald, crawl to the site of damage, and get to work.

“We’ve known for quite some time that when the body is wounded, white blood cells show up, and it’s really a spectacular piece of biology because these cells detect the wound at some distance,” says Mitchison. “But we haven’t known what they’re responding to. We do know something about what summons white blood cells to areas that are chronically inflamed, but in the case of an isolated physical wound, we haven’t really known what the signal is.”

These findings are reported in the June 4 issue of the journal Nature.

Philipp Niethammer, a postdoc in Mitchison’s lab, and Clemmens Grabber, a postdoc in Look’s lab, initiated this research project with no interest in wound healing. Rather, they were studying a groups of molecules called reactive oxygen species, or ROS. These small oxygen-derived molecules, of which hydrogen peroxide is one, have the potential to be both helpful and hurtful. Niethammer and Grabber were simply curious to find ways to detect ROS molecules in an organism.

To do this, they took a gene engineered to change color in the presence of hydrogen peroxide and inserted it into zebrafish embryos. Once the embryos entered the larvae stage after a few days, this synthetic gene spread throughout the entire body, essentially “wiring” the fish so that any discreet location in which hydrogen peroxide appears would glow.

But how do you coax the fish to produce a reactive chemical like hydrogen peroxide in the first place?

Since white blood cells have long been known to produce hydrogen peroxide, one obvious way to initiate chemical production would be to inflict a small wound onto the fish, and then, using microscopy, observe patterns of this chemical as white blood cells gathered around the wound. But much to the researchers surprise, they found that hydrogen peroxide immediately appeared at the wound site, prior to the arrival of any white blood cell, and quickly disseminated into neighboring tissue.

They repeated the experiment, this time in zebrafish where they’d disabled a protein that was previously discovered to produce hydrogen peroxide in the human thyroid gland. Not only did hydrogen peroxide not appear at the wound site, but white blood cells failed to respond to the injury.

“This was our real eureka! moment,” says Niethammer. “We weren’t too surprised that we could block hydrogen peroxide production through this technique, but what we didn’t expect at all was that white blood cells wouldn’t respond. This proved that the white blood cells needed hydrogen peroxide to sense the wound, and move towards it.”

Of course, zebrafish are not people, and while our genomes share many similarities with these tiny fish, it isn’t yet clear that natural selection has conserved this process throughout the evolutionary family tree. Still, these findings offer something of a conceptual shift in how to view human conditions where hydrogen peroxide plays a role.

“When we look at how hydrogen peroxide works in people, this really starts getting intriguing,” says Mitchison.

In the human body, hydrogen peroxide is produced primarily in three places: lung, gut, and thyroid gland. Because hydrogen peroxide, and the proteins responsible for producing other ROS molecules, are especially present in lung and gut, the researchers hypothesize that human diseases relevant to these findings would include any in the lung and gut that involve disproportionate levels of white blood cells, like asthma, chronic pulmonary obstruction, and some inflammatory gut diseases.

“Our lungs are supposed to be sterile; our guts are anything but,” says Mitchison. “It’s very logical that both those tissues produce hydrogen peroxide all the time. Perhaps in conditions like asthma, the lung epithelia is producing too much hydrogen peroxide because it’s chronically irritated, which, if our findings translate to humans, would explain inappropriate levels of white blood cells. This is certainly a question worth pursuing.”

Mitchison is currently laying the groundwork for investigating this hypothesis.

This research was funded by the National Institutes of Health.

Full Citation:

Nature, June 3, 2009; 459 (7247)

“A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish”

Philipp Niethammer(1), Clemens Grabher(2, 3), A. Thomas Look(2, 4), Timothy J. Mitchison(1)

1-Departement of Systems Biology, Harvard Medical School, Boston MA
2-Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
3-Current address: Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe GmbH, 76344 Eggenstein-Leopoldshafen, Germany

4-Division of Hematology/Oncology, Department of Pediatrics, Children’s Hospital, Harvard Medical School, Boston, MA

Harvard Medical School has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 17 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Children's Hospital Boston, Dana-Farber Cancer Institute, Forsyth Institute, Harvard Pilgrim Health Care, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, and VA Boston Healthcare System.

David Cameron | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>