Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human milk fat improves growth in premature infants

15.08.2014

For premature infants, adequate growth while in the neonatal intensive care unit is an indicator of better long-term health and developmental outcomes. Researchers at the USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine and Texas Children's Hospital have now successfully incorporated a cream supplement into premature infants' diets that improved their growth outcomes in the NICU. The report appears today in the Journal of Pediatrics.

"For premature babies who weigh less than 1,000 grams (about 2 pounds, 2 ounces), one of the problems is that their lungs and other organs are still developing when they are born. If the infant gains weight and increases in length at a good rate while in the NICU, this helps improve their outcomes," said Dr. Amy Hair, assistant professor of pediatrics at Baylor, neonatologist at Texas Children's Hospital and first author of the study.

Previous research has shown that an exclusive human milk diet protects the intestines of premature infants and supports their growth. This diet consists of mothers' own breast milk or donor human milk, as well as a fortifier consisting of protein and minerals made from the donor milk.

In this study, researchers sought a way to optimize this growth in very small infants (those who weigh between 750 and 1,250 grams) who need additional calories. Because infants are already receiving enough protein from the fortifier, another way to help them grow is by giving them fat. One of the byproducts of pasteurizing donor milk is milk fat, also referred to as a cream supplement.

... more about:
»Human »Medicine »NICU »breast »grow »infants »milk »premature »volume »weight

In this study, researchers compared the growth outcomes of infants who received the exclusive human milk diet and the cream supplement to infants who received just the exclusive human milk diet. They found that infants in the cream group had better growth outcomes in terms of weight and length than infants in the control group.

"This is a natural way to give them fat. Previously, we would add oils or infant formula to help premature babies grow, but we can now use a natural source from donor milk," said Hair.

Hair noted that because the growth was both in weight and length, this growth is likely lean mass, consisting of bone and muscle growth.

"You want to see babies growing in both weight and length," said Hair.

She also noted that the volume of milk given to these infants cannot change to help them grow because their stomach and intestine can only tolerate a certain amount of feedings.

"You cannot give them more volumes of milk. Especially if they have lung problems, they have to have a certain volume of milk. This is a way to add calories but not change the volume of milk," she said.

Since November 2013, the NICU at Texas Children's Hospital has changed its protocol to add this cream supplement to the diet of infants who weigh less than 1,500 grams.

"This also emphasizes the importance of donating excess breast milk that your baby doesn't need to a milk bank. It can help nourish our tiniest and most vulnerable infants," said Hair.

Texas Children's was the first hospital in the world to add human milk-based cream to the diets of very low birth weight infants.

In addition to adding cream to the diets of premature infants, since 2009, Texas Children's has significantly reduced its rates of necrotizing enterocolitis, one of the most devastating and potentially fatal diseases a neonate can face, by implementing a human milk feeding protocol for all infants weighing less than 3.3 pounds.

"Texas Children's strives to be a leader in human milk feeding, because we know it impacts outcomes," said Hair.

###

Others who took part in the study include Dr. Cynthia L. Blanco and Dr. Alvaro G. Moreira of The University of Texas Health Science Center at San Antonio; Keli M. Hawthorne and Dr. Steven A. Abrams of Baylor and the CNRC; and Dr. Martin L. Lee and Dr. David J. Rechtman of Prolacta Bioscience.

This project was funded in part with federal funds from the USDA/ARS under Cooperative Agreement 58-6250-6-001 and National Center for Research Resources General Clinical Research for Children Grant RR00188. Prolacta Bioscience provided the product for the study.

Learn more about Texas Children's donor breast milk program.

Dipali Pathak | Eurek Alert!
Further information:
http://www.bcm.edu

Further reports about: Human Medicine NICU breast grow infants milk premature volume weight

More articles from Health and Medicine:

nachricht Natural metabolite can suppress inflammation
01.07.2016 | ITMO University

nachricht Benign bacteria block mosquitoes from transmitting Zika, chikungunya viruses
01.07.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>