Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-fat diet impairs muscle health before impacting function

07.10.2009
Skeletal muscle plays a critical role in regulating blood sugar levels in the body. But few studies have comprehensively examined how obesity caused by a high-fat diet affects the health of muscle in adolescents who are pre-diabetic.

In a paper published tomorrow in the scientific journal PLoS One, a team of McMaster University researchers report that the health of young adult muscle declines during the pre-diabetic state, which is when blood sugar levels are higher than normal but lower than during Type 2 diabetes. The researchers found that during this period significant impairments occur in the muscle, even though it appears to be functioning normally.

"Based on the way the muscles performed, you would think that they're still healthy," said Thomas Hawke, an associate professor of pathology and molecular medicine of the Michael G. DeGroote School of Medicine at McMaster University. "But the fact is the muscle is not healthy. It's undergone a lot of pathological changes."

Hawke led a team of researchers at McMaster and York universities in using mice to examine how a high-fat diet, leading to obesity, affected the form and function of skeletal muscle. The researchers found the high-fat diet resulted in insulin resistance, large increases in fat mass and weight gain. But it also led to initial adaptations in the muscle.

"What our results tell us is that, initially, skeletal muscle appears to respond positively to the high-fat diet. By changing the size or type of its muscle fibres, the muscle adapts to the high-fat diet by saying 'Let's burn more of this fuel,' " Hawke said.

"But with continued high-fat feeding, we're giving the muscle more fuel than it can handle. So, even though it has made these initial, positive changes, continued high-fat feeding is more than the muscle can cope with. That's when a downward spiral starts."

The researchers also discovered that not all muscles responded in the same way to obesity. Some adapted by changing their fibre type, while others altered the size of their fibres. But, in all cases analyzed, a high-fat diet decreased the ability of skeletal muscle to use fat or glucose as fuel.

When the researchers looked at function, and examined the maximum effort the muscles could generate, they discovered no difference between the high-fat diet group and the control group which was eating a diet significantly lower in fat. However, if the muscles were fatigued and then were required to work, the high-fat diet group didn't recover as quickly as the control group.

"What this suggests is that the muscle is trying to maintain function despite all the negative changes that have resulted," Hawke said. "When we stress the muscle a bit though, such as fatiguing it, there are some hints toward functional impairment, but overall the muscle has coped well, functionally anyways."

The authors concluded that early therapeutic interventions in obese, pre-diabetic youth are needed prior to significant long-term effects on the growth and function of their muscles.

In Canada, 2.4 million people are living with diabetes and up to six million more have pre-diabetes, according to the Canadian Diabetes Association. If left untreated, approximately 25 per cent of people with pre-diabetes will progress to diabetes within three to five years.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: McMaster fibre type high-fat diet pre-diabetic skeletal muscle

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>