Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-fat diet impairs muscle health before impacting function

Skeletal muscle plays a critical role in regulating blood sugar levels in the body. But few studies have comprehensively examined how obesity caused by a high-fat diet affects the health of muscle in adolescents who are pre-diabetic.

In a paper published tomorrow in the scientific journal PLoS One, a team of McMaster University researchers report that the health of young adult muscle declines during the pre-diabetic state, which is when blood sugar levels are higher than normal but lower than during Type 2 diabetes. The researchers found that during this period significant impairments occur in the muscle, even though it appears to be functioning normally.

"Based on the way the muscles performed, you would think that they're still healthy," said Thomas Hawke, an associate professor of pathology and molecular medicine of the Michael G. DeGroote School of Medicine at McMaster University. "But the fact is the muscle is not healthy. It's undergone a lot of pathological changes."

Hawke led a team of researchers at McMaster and York universities in using mice to examine how a high-fat diet, leading to obesity, affected the form and function of skeletal muscle. The researchers found the high-fat diet resulted in insulin resistance, large increases in fat mass and weight gain. But it also led to initial adaptations in the muscle.

"What our results tell us is that, initially, skeletal muscle appears to respond positively to the high-fat diet. By changing the size or type of its muscle fibres, the muscle adapts to the high-fat diet by saying 'Let's burn more of this fuel,' " Hawke said.

"But with continued high-fat feeding, we're giving the muscle more fuel than it can handle. So, even though it has made these initial, positive changes, continued high-fat feeding is more than the muscle can cope with. That's when a downward spiral starts."

The researchers also discovered that not all muscles responded in the same way to obesity. Some adapted by changing their fibre type, while others altered the size of their fibres. But, in all cases analyzed, a high-fat diet decreased the ability of skeletal muscle to use fat or glucose as fuel.

When the researchers looked at function, and examined the maximum effort the muscles could generate, they discovered no difference between the high-fat diet group and the control group which was eating a diet significantly lower in fat. However, if the muscles were fatigued and then were required to work, the high-fat diet group didn't recover as quickly as the control group.

"What this suggests is that the muscle is trying to maintain function despite all the negative changes that have resulted," Hawke said. "When we stress the muscle a bit though, such as fatiguing it, there are some hints toward functional impairment, but overall the muscle has coped well, functionally anyways."

The authors concluded that early therapeutic interventions in obese, pre-diabetic youth are needed prior to significant long-term effects on the growth and function of their muscles.

In Canada, 2.4 million people are living with diabetes and up to six million more have pre-diabetes, according to the Canadian Diabetes Association. If left untreated, approximately 25 per cent of people with pre-diabetes will progress to diabetes within three to five years.

Veronica McGuire | EurekAlert!
Further information:

Further reports about: McMaster fibre type high-fat diet pre-diabetic skeletal muscle

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>