Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heavy metals in seafood: Satisfactory results of interlaboratory comparison

Fifty-seven laboratories from 29 countries volunteered to put their measuring competence to the test. Each laboratory received a sample without knowing the levels of heavy metals present, and was asked to measure and report the values back to the JRC.

The good results should enhance consumers' confidence, as maximum levels of lead, cadmium and total mercury in seafood are regulated by EU law and it has been proven that most participants are able to correctly measure them. In addition, this comparison has highlighted other issues, such as the apparent dependency of the measurements of inorganic arsenic on the type of food tested.

Excessive intake of heavy metals may lead to a decline in mental, cognitive and physical health. A particular concern is potential developmental defects in children exposed in utero. From a toxicological point of view, the chemical form in which the metal is ingested plays a significant role. For example, methylmercury is much more toxic than inorganic mercury compounds, whilst inorganic arsenic is more toxic than the organic species of arsenic.

The interlaboratory comparison

The interlaboratory comparison was organised in support of the European Co-operation for Accreditation (EA), the Asia Pacific Laboratory Accreditation Cooperation (APLAC) and the national reference laboratories associated to the European Union Reference Laboratory for Heavy Metals in Feed and Food.

Participants were asked to report both the measured value of each heavy metal in question in the sample and the uncertainties associated with those measurements. The results were scored according to international standards .

The outcome of the exercise was generally positive. All of the 57 laboratories that registered reported results. The share of satisfactory scores ranged between 80% and 96% (Table 1 in pdf link). Participants tended to underestimate the content of total arsenic, and to a lesser extent total cadmium. The distribution of the participating laboratories by country is shown in Figure 2 in pdf link.

Contrary to a previous exercise (IMEP-107 on total and inorganic arsenic in rice), the values reported for inorganic arsenic showed a large spread. Interestingly, this indicates that the matrix (in this case, seafood), has a major influence on the analytical determination of inorganic arsenic. This is a crucial consideration for legislators, because specifying single maximum level of arsenic in food would appear to be unfeasible.

Legislative situation

In Europe, maximum levels for lead, cadmium and total mercury in food are laid down in legislation , varying from 0.5 to 1.0 mg. per kg. for different seafood. No maximum level exists for the methylmercury form of mercury, as its measurement requires specific analytical equipment not routinely present in testing laboratories. However, methylmercury is the main source of human intake of mercury in fish and fishery products, and is important due to its high toxicity compared to inorganic mercury.

No maximum levels for arsenic have been laid down in European legislation either, due to a lack of information about reliable analytical methods for determining inorganic arsenic in different food commodities, and measurement values of inorganic arsenic are generally believed to be method-dependent.

The interlaboratory comparison was, therefore, extended to include methylmercury and inorganic arsenic, in order to investigate the issues that laboratories encounter in measuring these substances.

JRC-IRMM and the EU Reference Laboratories

The Institute for Reference Materials and Measurements (IRMM) is one of the seven institutes of the Joint Research Centre (JRC) which is a Directorate-General of the European Commission.

It operates four European Union Reference Laboratories (EU-RL), including the EU-RL for heavy metals in feed and food. The EU-RLs are analytical laboratories designated by EU legislation and which are an integral part of European risk management system. Their duties include setting up EU-wide standards for reliable testing methods, organising comparative tests, training analysts from national laboratories and providing scientific and technical assistance to the European Commission.

JRC-IRMM also operates the International Measurement Evaluation Programme (IMEP®). It organises interlaboratory comparisons in support to EU policies. Many of the interlaboratory comparisons are open to all laboratories that wish to participate, but some are restricted to, for example, national reference laboratories. Proficiency tests are normally carried out only on request of another Commission department or agency. Some comparisons are run to certify reference materials and validation studies are organised regularly to validate analysis methods.


Interlaboratory comparison report: "IMEP-30: Total arsenic, cadmium, lead, and mercury, as well as methylmercury and inorganic arsenic in seafood":

Elena Gonzalez Verdesoto, JRC Press officer:

David Anderson, JRC-IRMM Communication officer:

Elena Gonzalez Verdesoto | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>