Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene shows potential as novel anti-cancer therapeutic strategy

25.02.2015

University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells.

This new development opens up the possibility of preventing or treating a broad range of cancers, using a non-toxic material.

Writing in the journal Oncotarget, the team of researchers led by Professor Michael Lisanti and Dr Aravind Vijayaraghavan has shown that graphene oxide, a modified form of graphene, acts as an anti-cancer agent that selectively targets cancer stem cells (CSCs). In combination with existing treatments, this could eventually lead to tumour shrinkage as well as preventing the spread of cancer and its recurrence after treatment. However, more pre-clinical studies and extensive clinical trials will be necessary to move this forward into the clinic to ensure patient benefit.

Professor Lisanti, the Director of the Manchester Centre for Cellular Metabolism within the University's Institute of Cancer Sciences, explained: "Cancer stem cells possess the ability to give rise to many different tumour cell types. They are responsible for the spread of cancer within the body - known as metastasis- which is responsible for 90% of cancer deaths.

"They also play a crucial role in the recurrence of tumours after treatment. This is because conventional radiation and chemotherapies only kill the 'bulk' cancer cells, but do not generally affect the CSCs."

Dr Vijayaraghavan added: "Graphene oxide is stable in water and has shown potential in biomedical applications. It can readily enter or attach to the surface of cells, making it a candidate for targeted drug delivery. In this work, surprisingly, it's the graphene oxide itself that has been shown to be an effective anti-cancer drug.

"Cancer stem cells differentiate to form a small mass of cells known as a tumour-sphere. We saw that the graphene oxide flakes prevented CSCs from forming these, and instead forced them to differentiate into non-cancer stem-cells.

"Naturally, any new discovery such as this needs to undergo extensive study and trials before emerging as a therapeutic. We hope that these exciting results in laboratory cell cultures can translate into an equally effective real-life option for cancer therapy."

The team prepared a variety of graphene oxide formulations for testing against six different cancer types - breast, pancreatic, lung, brain, ovarian and prostate. The flakes inhibited the formation of tumour sphere formation in all six types, suggesting that graphene oxide can be effective across all, or at least a large number of different cancers, by blocking processes which take place at the surface of the cells. The researchers suggest that, used in combination with conventional cancer treatments, this may deliver a better overall clinical outcome.

Dr Federica Sotgia, one of the co-authors of the study concluded: "These findings show that graphene oxide could possibly be applied as a lavage or rinse during surgery to clear CSCs or as a drug targeted at CSCs.

"Our results also show that graphene oxide is not toxic to healthy cells, which suggests that this treatment is likely to have fewer side-effects if used as an anti-cancer therapy."

Graphene has the potential to revolutionise a vast number of applications, lighter, stronger composites to flexible, bendable electronics. Graphene oxide can be used to create membranes that can coat surfaces to prevent corrosion, or filter clean water in real time. Demonstrating the remarkable properties of graphene won a University team of researchers the Nobel Prize for Physics in 2010.

Media Contact

Jamie Brown
Jamie.brown@manchester.ac.uk
44-016-127-58383

 @UoMNews

http://www.manchester.ac.uk 

Jamie Brown | EurekAlert!

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>