Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good bacteria armed with antibiotic resistance protect gut microbiome

13.06.2014

Researchers from Case Western Reserve University in Cleveland have discovered that populating the gastrointestinal (GI) tracts of mice with Bacteroides species producing a specific enzyme helps protect the good commensal bacteria from the harmful effects of antibiotics. Their research is published ahead of print in Antimicrobial Agents and Chemotherapy.

Antibiotics are powerful weapons against pathogens, but most are relatively indiscriminate, killing the good bacteria, along with the bad. Thus, they may render patients vulnerable to invasion, particularly by virulent, antibiotic-resistant pathogens that frequently populate hospitals.

The novel aspect of the research is that the enzyme produced by these bacteria, beta-lactamase, is a major cause of antibiotic resistance, says first author, Usha Stiefel. Interestingly, the enzyme is not only protecting the bacteria that produce it but also the rest of the bacteria making up the intestinal microbiome.

In the study, the investigators established populations of beta-lactamase producing Bacteroides in some mice, but not others. They then gave all the mice ceftriaxone, a beta-lactam antibiotic, for three days and then oral doses of vancomycin-resistant enterococcus, or Clostridium difficile, both of which are virulent GI pathogens.

The mice that had been populated with Bacteroides maintained their diverse species of commensal gut bacteria, free of pathogens, while the control mice saw their commensals decimated by antibiotics, enabling establishment of the pathogens.

"When patients in the hospital or nursing home setting receive antibiotics, it is doubly dangerous when they lose their native colonic bacteria, because healthcare settings are full of resistant or particularly virulent bacteria, and so patients are especially vulnerable to acquiring these bacteria within their intestinal tracts," says Stiefel.

Since the Bacteroides, which comprise roughly one quarter of the intestinal microbiome, are absent elsewhere in the body, the investigators believe that the beta-lactamase will not interfere with treatment of infections in other organ systems, such as in the respiratory tract, or the blood, explains Stiefel.

"The results of our study are exciting because they show how it might be possible to take antibiotics without suffering from the loss of your colonic microbiome and then becoming colonized by virulent pathogens," says Stiefel. For example, beta-lactamase enzymes could be given orally as drugs, to protect the gut bacteria from systemic antibiotics. Alternatively, as with the mice, patients' GI tracts might be populated with antibiotic-degrading bacteria.

One weakness of the strategy is that while it could protect against acquiring a GI infection, C. difficile, for example, it could not be used to combat such an infection.

"The recognition of the importance of an intact and diverse microbiome has probably best been demonstrated by the successful treatment of Clostridium difficile colitis by fecal microbiota transplantation, or 'stool transplant,'" says Stiefel. "If you have an intact intestinal microbiome, you simply are going to be resistant to acquiring many types of infection."

"If we can find ways to preserve the microbiome in hospitalized patients who are receiving antibiotics, we are on our way to preventing a large proportion of hospital-acquired infections," says Stiefel.

###

The manuscript can be found online at http://bit.ly/asmtip0614d. The final version of the article is scheduled for the August 2014 issue of Antimicrobial Agents and Chemotherapy.

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!
Further information:
http://www.asmusa.org

Further reports about: ASM Clostridium antibiotic enzyme pathogens resistance transplant

More articles from Health and Medicine:

nachricht Real-time imaging of lung lesions during surgery helps localize tumors and improve precision
30.07.2015 | American Association for Thoracic Surgery

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

The Macromolecular Shredder for RNA in the Cell Nucleus

03.08.2015 | Life Sciences

Argonne Finds Butanol is Good for Boats

03.08.2015 | Ecology, The Environment and Conservation

How to Become a T Follicular Helper Cell

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>