Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Glaucoma Test Allows Earlier, More Accurate Detection

19.01.2011
A UA engineer has developed a new instrument that tests for glaucoma, a leading cause of blindness that afflicts more than 4 million Americans. The device makes testing for the disease easier and less invasive.

Cumbersome glaucoma tests that require a visit to the ophthalmologist could soon be history thanks to a home test developed by a University of Arizona engineer.

The self-test instrument has been designed in Eniko Enikov's lab at the UA College of Engineering. Gone are the eye drops and need for a sterilized sensor. In their place is an easy-to-use probe that gently rubs the eyelid and can be used at home.

"You simply close your eye and rub the eyelid like you might casually rub your eye," said Enikov, a professor of aerospace and mechanical engineering. "The instrument detects the stiffness and, therefore, infers the intraocular pressure." Enikov also heads the Advanced Micro and Nanosystems Laboratory.

While the probe is simple to use, the technology behind it is complex, involving a system of micro-force sensors, specially designed microchips and math-based procedures programmed into its memory.

Enikov began working on the probe four years ago in collaboration with Dr. Gholan Peyman, a Phoenix ophthalmologist. "We went through several years of refinement and modifications to arrive at the current design," Enikov noted.

The National Science Foundation has funded the work, and Enikov and Peyman now are seeking investors to help fund final development and commercialization of the product.

In addition to screening for glaucoma, an eye disease that can lead to blindness if left untreated, the device corrects some problems with the current procedure and can be used to measure drainage of intraocular fluid.

"Eye pressure varies over a 24-hour cycle," Enikov said. "So it could be low at the doctor's office and three hours later it might be high. With only a single test, the doctor might miss the problem. Having the ability to take more frequent tests can lead to earlier detection in some cases."

Once the diagnosis is made, several treatments are available. The question then is: How effective are they? Patients could use the probe at home to trace how much the pressure decreases after using eye drop medications, for instance.

"One of the reasons pressure builds up in the eye is because fluid doesn't drain properly," Enikov noted. "Currently, there are no methods available to test drainage."

Current tests require applying pressure directly to the cornea, but only very light pressure is safe to use, and it doesn't cause the fluid to drain.

"Our technique allows us to apply slightly greater pressure, but it's still not uncomfortable," he said. "It's equivalent to rubbing your eye for a brief period to find out if the pressure changes. If it does, we know by how much and if there is a proper outflow of intraocular fluid."

Sometimes, a surgical shunt is used to help fluid drain from the eye. "The problem with glaucoma shunts is they can plug up over time," Enikov noted. "Or if they're not properly installed, they may drain too quickly. So you would want to know how well the shunt is working and if it is properly installed. Our device could help answer those questions."

In another scenario, certain patients cannot be tested for glaucoma using currently available procedures. "If a patient had cataract surgery or some other surgery through the cornea, the cornea sometimes thickens," Enikov said. "The cornea's structure is different, but our test remains accurate because it's not applied to the cornea."

Instead, it presses the entire eyeball, much as you might press a balloon to determine its stiffness.

"The innovation with our device is that it's noninvasive, simpler to use and applies to a variety of situations that are either difficult to address or impossible to test using the current procedures," Enikov said. "That's why we're so excited about this probe. It has great potential to improve medical care, and significant commercial possibilities, as well."

CONTACT:

Pete Brown, Director of Communication, UA College of Engineering,
520-621-3754, pnb@email.arizona.edu

Pete Brown | University of Arizona
Further information:
http://www.arizona.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>