Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Glaucoma Test Allows Earlier, More Accurate Detection

19.01.2011
A UA engineer has developed a new instrument that tests for glaucoma, a leading cause of blindness that afflicts more than 4 million Americans. The device makes testing for the disease easier and less invasive.

Cumbersome glaucoma tests that require a visit to the ophthalmologist could soon be history thanks to a home test developed by a University of Arizona engineer.

The self-test instrument has been designed in Eniko Enikov's lab at the UA College of Engineering. Gone are the eye drops and need for a sterilized sensor. In their place is an easy-to-use probe that gently rubs the eyelid and can be used at home.

"You simply close your eye and rub the eyelid like you might casually rub your eye," said Enikov, a professor of aerospace and mechanical engineering. "The instrument detects the stiffness and, therefore, infers the intraocular pressure." Enikov also heads the Advanced Micro and Nanosystems Laboratory.

While the probe is simple to use, the technology behind it is complex, involving a system of micro-force sensors, specially designed microchips and math-based procedures programmed into its memory.

Enikov began working on the probe four years ago in collaboration with Dr. Gholan Peyman, a Phoenix ophthalmologist. "We went through several years of refinement and modifications to arrive at the current design," Enikov noted.

The National Science Foundation has funded the work, and Enikov and Peyman now are seeking investors to help fund final development and commercialization of the product.

In addition to screening for glaucoma, an eye disease that can lead to blindness if left untreated, the device corrects some problems with the current procedure and can be used to measure drainage of intraocular fluid.

"Eye pressure varies over a 24-hour cycle," Enikov said. "So it could be low at the doctor's office and three hours later it might be high. With only a single test, the doctor might miss the problem. Having the ability to take more frequent tests can lead to earlier detection in some cases."

Once the diagnosis is made, several treatments are available. The question then is: How effective are they? Patients could use the probe at home to trace how much the pressure decreases after using eye drop medications, for instance.

"One of the reasons pressure builds up in the eye is because fluid doesn't drain properly," Enikov noted. "Currently, there are no methods available to test drainage."

Current tests require applying pressure directly to the cornea, but only very light pressure is safe to use, and it doesn't cause the fluid to drain.

"Our technique allows us to apply slightly greater pressure, but it's still not uncomfortable," he said. "It's equivalent to rubbing your eye for a brief period to find out if the pressure changes. If it does, we know by how much and if there is a proper outflow of intraocular fluid."

Sometimes, a surgical shunt is used to help fluid drain from the eye. "The problem with glaucoma shunts is they can plug up over time," Enikov noted. "Or if they're not properly installed, they may drain too quickly. So you would want to know how well the shunt is working and if it is properly installed. Our device could help answer those questions."

In another scenario, certain patients cannot be tested for glaucoma using currently available procedures. "If a patient had cataract surgery or some other surgery through the cornea, the cornea sometimes thickens," Enikov said. "The cornea's structure is different, but our test remains accurate because it's not applied to the cornea."

Instead, it presses the entire eyeball, much as you might press a balloon to determine its stiffness.

"The innovation with our device is that it's noninvasive, simpler to use and applies to a variety of situations that are either difficult to address or impossible to test using the current procedures," Enikov said. "That's why we're so excited about this probe. It has great potential to improve medical care, and significant commercial possibilities, as well."

CONTACT:

Pete Brown, Director of Communication, UA College of Engineering,
520-621-3754, pnb@email.arizona.edu

Pete Brown | University of Arizona
Further information:
http://www.arizona.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>