Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New funding for development of mucosal vaccines based on nanoparticle technology

08.10.2013
The Knut and Alice Wallenberg Foundation will give a little over SEK 16 million to the development of new, highly-efficient mucosal vaccines.

The vaccines will be drinkable or given as a nasal spray. Professor Nils Lycke at MIVAC at the Sahlgrenska Academy will in cooperation with researchers at Chalmers University of Technology and Lund University, combine technologies to develop the next generation of effective mucosal vaccines based on immunomodulation and cell-targeted nanoparticles.

According to world-health organizations, vaccination programs against the most serious infectious diseases represent the single-most important measure to improve global health and prevent debilitating disease. However, as most vaccines are injected and given by highly-trained healthcare personnel they are more difficult to administer in many parts of the world and the use of syringes, which may be reused, increases the risk for blood born contamination and spread of infection.

Also traditional mass vaccination in case of pandemic spread of infection, as for example with influenza, is very costly and difficult to undertake with traditional vaccines.

Mucosal vaccines, drinkable or nasal spray vaccines, have many practical advantageous, but few mucosal vaccines are commercially available today. This is because mucosal vaccines need powerful adjuvants and finding effective formulations that protect the vaccine components from degradation in harsh mucosal environments, such as the gut intestine.

The adjuvant is the critical component of most vaccines that greatly enhances the immune response. For mucosal vaccines traditional adjuvants are not effective. Another advantage of mucosal vaccines is that the immune defense is located to the mucosal membranes that are the port of entry for most pathogens, including tuberculosis, influenza and HIV.

The research team has received funding from the Foundation to develop the next generation of effective mucosal vaccines based on their expertise in vaccine adjuvant and lipid nanoparticle research.

“We are now taking a unique and pioneering step towards a universal platform for mucosal vaccines by developing a new targeted lipid nanoparticle vaccine that combines knowledge from different disciplines,” says Nils Lycke.

The team of researchers to undertake the project are professors Nils Lycke and Mary-Jo Wick at the Sahlgrenska Academy, William Agace at Lund University, Fredrik Höök and Marta Bally at Chalmers.

The research group will take a conceptually new approach to combining effective adjuvants with lipid nanoparticles to direct these complexes to the dendritic cells in the mucosal membranes.

These cells are the key target for the next generation of mucosal vaccines and responsible for initiating vaccine immune responses. The researchers have complementing expertise to solve the problems of how to combine all the expected properties of the mucosal vaccine in one particle.

“Thanks to a flexible particle design, and extensive experience with a patented adjuvant system we hope to be successful in our efforts” says Nils Lycke. If successful, the next generation of mucosal vaccines will have a major impact not only on vaccine prevention of infections, but also on global health ” says Nils Lycke.

“The idea is unique in several respects. No one has previously combined these components in a particle and no one has, in a structured manner, optimized the lipid particles to make mucal inoculations effective.”

The research project brings together four internationally successful research leaders with expertise in immunology, nano-biotechnology and vaccine development.

For further information, please contact:
Professor Nils Lycke at the Sahlgrenska Academy, head of the MIVAC (Mucosal Immunity and Vaccines) research center
Tel. +46 (0)70-6711641, +46 (0)31-786 63 21
e-mail nils.lycke@microbio.gu.se
William Agace, Professor at Lund University
046-222 04 16
William.Agace@med.lu.se
Fredrik Höök, Professor, Chalmers
031-772 61 30
fredrik.hook@chalmers.se

Torsten Arpi | idw
Further information:
http://www.wallenberg.com/kaw/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>