Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New funding for development of mucosal vaccines based on nanoparticle technology

08.10.2013
The Knut and Alice Wallenberg Foundation will give a little over SEK 16 million to the development of new, highly-efficient mucosal vaccines.

The vaccines will be drinkable or given as a nasal spray. Professor Nils Lycke at MIVAC at the Sahlgrenska Academy will in cooperation with researchers at Chalmers University of Technology and Lund University, combine technologies to develop the next generation of effective mucosal vaccines based on immunomodulation and cell-targeted nanoparticles.

According to world-health organizations, vaccination programs against the most serious infectious diseases represent the single-most important measure to improve global health and prevent debilitating disease. However, as most vaccines are injected and given by highly-trained healthcare personnel they are more difficult to administer in many parts of the world and the use of syringes, which may be reused, increases the risk for blood born contamination and spread of infection.

Also traditional mass vaccination in case of pandemic spread of infection, as for example with influenza, is very costly and difficult to undertake with traditional vaccines.

Mucosal vaccines, drinkable or nasal spray vaccines, have many practical advantageous, but few mucosal vaccines are commercially available today. This is because mucosal vaccines need powerful adjuvants and finding effective formulations that protect the vaccine components from degradation in harsh mucosal environments, such as the gut intestine.

The adjuvant is the critical component of most vaccines that greatly enhances the immune response. For mucosal vaccines traditional adjuvants are not effective. Another advantage of mucosal vaccines is that the immune defense is located to the mucosal membranes that are the port of entry for most pathogens, including tuberculosis, influenza and HIV.

The research team has received funding from the Foundation to develop the next generation of effective mucosal vaccines based on their expertise in vaccine adjuvant and lipid nanoparticle research.

“We are now taking a unique and pioneering step towards a universal platform for mucosal vaccines by developing a new targeted lipid nanoparticle vaccine that combines knowledge from different disciplines,” says Nils Lycke.

The team of researchers to undertake the project are professors Nils Lycke and Mary-Jo Wick at the Sahlgrenska Academy, William Agace at Lund University, Fredrik Höök and Marta Bally at Chalmers.

The research group will take a conceptually new approach to combining effective adjuvants with lipid nanoparticles to direct these complexes to the dendritic cells in the mucosal membranes.

These cells are the key target for the next generation of mucosal vaccines and responsible for initiating vaccine immune responses. The researchers have complementing expertise to solve the problems of how to combine all the expected properties of the mucosal vaccine in one particle.

“Thanks to a flexible particle design, and extensive experience with a patented adjuvant system we hope to be successful in our efforts” says Nils Lycke. If successful, the next generation of mucosal vaccines will have a major impact not only on vaccine prevention of infections, but also on global health ” says Nils Lycke.

“The idea is unique in several respects. No one has previously combined these components in a particle and no one has, in a structured manner, optimized the lipid particles to make mucal inoculations effective.”

The research project brings together four internationally successful research leaders with expertise in immunology, nano-biotechnology and vaccine development.

For further information, please contact:
Professor Nils Lycke at the Sahlgrenska Academy, head of the MIVAC (Mucosal Immunity and Vaccines) research center
Tel. +46 (0)70-6711641, +46 (0)31-786 63 21
e-mail nils.lycke@microbio.gu.se
William Agace, Professor at Lund University
046-222 04 16
William.Agace@med.lu.se
Fredrik Höök, Professor, Chalmers
031-772 61 30
fredrik.hook@chalmers.se

Torsten Arpi | idw
Further information:
http://www.wallenberg.com/kaw/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>