Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh faced: Looking younger for longer

13.01.2014
Newcastle University researchers have identified an antioxidant Tiron, which offers total protection against some types of sun damage and may ultimately help our skin stay looking younger for longer.

Publishing in The FASEB Journal, the authors describe how in laboratory tests, they compared the protection offered against either UVA radiation or free radical stress by several antioxidants, some of which are found in foods or cosmetics.

While UVB radiation easily causes sunburn, UVA radiation penetrates deeper, damaging our DNA by generating free radicals which degrades the collagen that gives skin its elastic quality.

The Newcastle team found that the most potent anti-oxidants were those that targeted the batteries of the skin cells, known as the mitochondria. They compared these mitochondrial-targeted anti-oxidants to other non-specific antioxidants such as resveratrol, found in red wine, and curcumin found in curries, that target the entire cell. They found that the most potent mitochondrial targeted anti-oxidant was Tiron which provided 100%, protection of the skin cell against UVA sun damage and the release of damaging enzymes causing stress-induced damage.

Author, Mark Birch-Machin, Professor of Molecular Dermatology at Newcastle University said: “To discover that Tiron offers complete protection against UVA damage is exciting and promising, however, it is early days as Tiron is not a naturally occurring compound and has not yet been tested for toxicity in humans although there have been a few studies on rats.”

Of the work which was funded by BBSRC and Unilever, co-author at Newcastle University Dr Anne Oyewole said: “This finding on Tiron provides us with a platform to study an antioxidant - preferably a naturally occurring compound with a similar structure which could then be safely added to food or cosmetics.”

DNA damage

Our skin ages due to the constant exposure to sunlight as ultraviolet radiation from the sun penetrates cells and increases the number of damaging free radicals, especially the reactive oxygen species. Too many reactive oxygen species can be harmful because they can damage the DNA within our cells.

Over time, this can lead to the accumulation of mutations which speed up ageing and destroy the skin’s supportive fibres, collagen and elastin, causing wrinkles. Recent studies strongly suggest the damage caused by reactive oxygen species may also initiate and exacerbate the development of skin cancers.

Antioxidants in our diets from green tea, resveratrol which is found in red wine, turmeric which is used in curries and lycopene found in tomatoes, as well as some components in cosmetic creams, are known to neutralise this damage within the cells. They can slow down the damage and the rate of ageing and potentially lower the rate of other sun-induced skin lesions.

Method

The method developed offers the first test which enables the comparison of different antioxidants for their potency in a skin cell based system.

Skin cells treated with a panel of antioxidants were exposed to a physiological dose of ultraviolet A radiation – that is, the same dose that our skin would normally be exposed to on a warm summer’s day. The DNA within the skin cells was then copied using a polymerase chain reaction machine, in order to assess the amount of DNA damage present.

Using this method, Tiron which has the chemical composition 4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate was revealed to provide 100% protection against mitochondrial DNA damage.

Resveratrol, the antioxidant found in red wine, was found to protect against 22% of both the ultraviolet A radiation and stress-induced damage. NAC, a frequently used laboratory-based anti-oxidant, offered 20% protection against oxidative stress and 8% against UVA and curcumin offered 16% protection against oxidative stress and 8% against UVA.

In comparison Tiron offered 100% protection against UVA radiation and 100% protection against oxidative stress.

The team intends to take the work forward by further understanding the mechanism of how Tiron works, developing a compound similar to Tiron and testing for toxicity in humans. They say it will be several years before it is ready for use as a skin product or supplement.

Reference: Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. Anne O. Oyewole, Marie-Claire Wilmot, Mark Fowler, and Mark A. Birch-Machin. The FASEB Journal. doi: 10.1096/fj.13-237008

published on: 10th January 2014

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>