Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New cause found for muscle-weakening disease myasthenia gravis

An antibody to a protein critical to enabling the brain to talk to muscles has been identified as a cause of myasthenia gravis, researchers report.

The finding that an antibody to LRP4 is a cause of the most common disease affecting brain-muscle interaction helps explain why as many as 10 percent of patients have classic symptoms, like drooping eyelids and generalized muscle weakness, yet their blood provides no clue of the cause, said Dr. Lin Mei, Director of the Institute of Molecular Medicine and Genetics at the Medical College of Georgia at Georgia Regents University.

"You end up with patients who have no real diagnosis," Mei said.

The finding also shows that LRP4 is important, not only to the formation of the neuromuscular junction – where the brain and muscle talk – but also maintaining this important connection, said Mei, corresponding author of the paper in The Journal of Clinical Investigation.

Mei and his colleagues first reported antibodies to LRP4 in the blood of myasthenia gravis patients in the Archives of Neurology in 2012. For the new study, they went back to animals to determine whether the antibodies were harmless or actually caused the disease. When they gave healthy mice LRP4 antibodies, they experienced classic symptoms of the disease along with clear evidence of degradation of the neuromuscular junction.

LRP4 antibodies are the third cause identified for the autoimmune disease, which affects about 20 out of 100,000 people, primarily women under 40 and men over age 60, according to the National Institutes of Health and Myasthenia Gravis Foundation of America, Inc.

An antibody to the acetylcholine receptor is causative in about 80 percent of patients, said Dr. Michael H. Rivner, MCG neurologist and Director of the Electrodiagnostic Medicine Laboratory, who follows about 250 patients with myasthenia gravis. Acetylcholine is a chemical released by neurons which act on receptors on the muscle to activate the muscle. More recently, it was found that maybe 10 percent of patients have an antibody to MuSK, an enzyme that supports the clustering of these receptors on the surface of muscle cells.

"That leaves us with only about 10 percent of patients who are double negative, which means patients lack antibodies to acetylcholine receptors and MuSK," said Rivner, a troubling scenario for physicians and patients alike. "This is pretty exciting because it is a new form of the disease," Rivner said of the LRP4 finding.

Currently, physicians like Rivner tell patients who lack antibody evidence that clinically they appear to have the disease. Identifying specific causes enables a more complete diagnosis for more patients in the short term and hopefully will lead to development of more targeted therapies with fewer side effects, Rivner said.

To learn more about the role of the LRP4 antibody, Mei now wants to know if there are defining characteristics of patients who have it, such as more severe disease or whether it's found more commonly in a certain age or sex. He and Rivner have teamed up to develop a network of 17 centers, like GR Medical Center, where patients are treated to get these questions answered. They are currently pursuing federal funding for studies they hope will include examining blood, physical characteristics, therapies and more.

Regardless of the specific cause, disease symptoms tend to respond well to therapy, which typically includes chronic use of drugs that suppress the immune response, Rivner said. However, immunosuppressive drugs carry significant risk, including infection and cancer, he said.

Removal of the thymus, a sort of classroom where T cells, which direct the immune response, learn early in life what to attack and what to ignore, is another common therapy for myasthenia gravis. While the gland usually atrophies in adults, patients with myasthenia gravis tend to have enlarged glands. Rivner is part of an NIH-funded study to determine whether gland removal really benefits patients. Other therapies include a plasma exchange for acutely ill patients.

The Journal of Clinical Investigation study was funded by the NIH and the Muscular Dystrophy Association. Mei is a Georgia Research Alliance Eminent Scholar in Neuroscience.

Toni Baker | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>