Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot soldiers of the immune system

14.01.2013
IFIT antiviral protein recognizes foreign RNA and blocks viral infections

Researchers at McGill University and the Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences have discovered the molecular blueprint behind the IFIT protein. This key protein enables the human immune system to detect viruses and prevent infection by acting as foot soldiers guarding the body against infection.

They recognize foreign viral ribonucleic acid (RNA) produced by the virus and act as defender molecules by potentially latching onto the genome of the virus and preventing it from making copies of itself, blocking infection. The findings are a promising step towards developing new drugs for combatting a wide range of immune system disorders.

The discovery was made by teams led by Bhushan Nagar, a professor in the Department of Biochemistry at McGill's Faculty of Medicine, and Dr. Giulio Superti-Furga at the CeMM. Building on the 2011 CeMM discovery by Dr. Andreas Pichlmair that IFIT proteins unexpectedly interact directly with the viral RNA to inhibit its replication, the group's latest discovery reveals the molecular mechanism behind how IFIT proteins capture only the viral RNA and distinguishes it from normal molecules belonging to the host. Their research will be published on January 13 in the journal Nature.

"Infection by pathogens such as viruses and bacteria are caught by a layer of the immune system that consists of guard-like proteins constantly on the lookout for foreign molecules derived from the pathogen," explains Prof. Nagar. "Once the pathogen is detected, a rapid response by the host cell is elicited, which includes the production of an array of defender molecules that work together to block and remove the infection. The IFIT proteins are key members of these defender molecules."

When a virus enters a cell, it can generate foreign molecules such as RNA with three phosphate groups (triphosphate) exposed at one end, in order to replicate itself. Triphosphorylated RNA is what distinguishes viral RNA from the RNA found in the human host. During this time, the receptors of the innate immune system are usually able to detect the foreign molecules from the virus and turn on signaling cascades in the cell that leads to the switching on of an antiviral program, both within the infected and nearby uninfected cells. Hundreds of different proteins are produced as part of this anti-viral program, which work in concert to resist the viral infection.

In the Nagar lab, McGill graduate student Yazan Abbas used an arsenal of biophysical techniques, most notably X-ray crystallography, to capture the IFIT protein directly in the act of recognizing the foreign RNA. The work shed light on the interaction between IFITs and RNAs. The researchers determined that IFIT proteins have evolved a specific binding pocket, chemically compatible and big enough to fit only the triphoshorylated end of the viral RNA. Human RNA is not able to tightly interact with this pocket, thereby circumventing autoimmune reactions.

"Once the IFIT protein clamps down on the viral RNA, the RNA is then presumably prevented from being used by the virus for its own replication," says Superti-Furga, "Since many viruses, such as influenza and rabies, rely on triphosphate RNA for their lifecycle, these results have widespread implications in understanding how our cells interact with viruses and combat them."

This work could help advance the development of new drugs for combating a wide array of immune system disorders. "Our findings will be useful for the development of novel drugs directed at IFIT proteins, particularly in cases where it is necessary to dampen the immune response, such as inflammation or cancer therapy," says Nagar.

Cynthia Lee | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>