Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on the formation of body pigment

20.10.2009
The skin's pigment cells can be formed from completely different cells than has hitherto been thought, a new study from the Swedish medical university Karolinska Institutet shows. The results, which are published in the journal Cell, also mean the discovery of a new kind of stem cell.

The body's pigment gives essential protection against UV radiation. It is made up of a substance called melanin, which is produced by pigment cells in the skin called melanocytes. According to the established theory of body pigmentation, these melanocytes bud off from the spinal cord at an early foetal stage and then migrate to the skin where they remain for the rest of their lives.

Scientists at Karolinska Institutet in Stockholm have now shown that most melanocytes actually appear later on in foetal development from an immature cell type that exists in the skin's nerve fibres. These cells, called Schwann cell precursors (SCPs), can also be found in adults. In addition to this, the scientists have demonstrated how neuronal damage in adults can excite the maturation of melanocytes to form hyperpigmentation around the affected nerves.

"Our findings can provide new knowledge of how changes in skin pigmentation occur, not least of the links that have been observed between neurological disease and changes in pigmentation," says Professor Patrik Ernfors, who led the study.

Their results also shed new light on SCP cells, which were previously seen as an immature form of supportive cells the nervous system. The researchers describe how a change in cell signalling can make the SCP cells in the skin develop into pigment cells instead, and argue that SCP cells are really a kind of stem cell.

"This can help science to understand the development of diseases such as melanoma," says Professor Ernfors. "Weve always believed that it develops from melanocytes, but maybe it actually originates in the SCP cells."

Publication
Igor Adameyko, Francois Lallemend, Jorge B Aquino, Piotr Topilko, Jorge A Pereira, Thomas Müller, Nicolas Fritz, Anna Beljajeva, Makoto Mochii, Isabel Liste, Dmitry Usoskin, Ueli Suter, Carmen Birchmeier and Patrik Ernfors
Schwann Cell Precursors from Nerve Innervation is a Cellular Origin of Melanocytes in Skin

Cell, 16 October 2009

Katarina Sternudd | EurekAlert!
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>