Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-optic pen helps see inside brains of children with learning disabilities

19.06.2013
For less than $100, University of Washington researchers have designed a computer-interfaced drawing pad that helps scientists see inside the brains of children with learning disabilities while they read and write.

The device and research using it to study the brain patterns of children will be presented June 18 at the Organization for Human Brain Mapping meeting in Seattle.

A paper describing the tool, developed by the UW’s Center on Human Development and Disability, was published this spring in Sensors, an online open-access journal. “Scientists needed a tool that allows them to see in real time what a person is writing while the scanning is going on in the brain,” said Thomas Lewis, director of the center’s Instrument Development Laboratory. “We knew that fiber optics were an appropriate tool. The question was, how can you use a fiber-optic device to track handwriting?”

Center on Human Development and Disability

Todd Richards demonstrates the pen and pad device while inside the fMRI.

To create the system, Lewis and fellow engineers Frederick Reitz and Kelvin Wu hollowed out a ballpoint pen and inserted two optical fibers that connect to a light-tight box in an adjacent control room where the pen’s movement is recorded. They also created a simple wooden square pad to hold a piece of paper printed with continuously varying color gradients. The custom pen and pad allow researchers to record handwriting during functional magnetic resonance imaging, or fMRI, to assess behavior and brain function at the same time.
Other researchers have developed fMRI-compatible writing devices, but “I think it does something similar for a tenth of the cost,” Reitz said of the UW system. By using supplies already found in most labs (such as a computer), the rest of the supplies – pen, fiber optics, wooden pad and printed paper – cost less than $100.The device connects to a computer with software that records every aspect of the handwriting, from stroke order to speed, hesitations and liftoffs. Understanding how these physical patterns correlate with a child’s brain patterns can help scientists understand the neural connections involved.

Researchers studied 11- and 14-year-olds with either dyslexia or dysgraphia, a handwriting and letter-processing disorder, as well as children without learning disabilities. Subjects looked at printed directions on a screen while their heads were inside the fMRI scanner. The pen and pad were on a foam pad on their laps.

Subjects were given four-minute blocks of reading and writing tasks. Then they were asked to simply think about writing an essay (they later wrote the essay when not using the fMRI). Just thinking about writing caused many of the same brain responses as actual writing would.

“If you picture yourself writing a letter, there’s a part of the brain that lights up as if you’re writing the letter,” said Todd Richards, professor of radiology and principal investigator of the UW Integrated Brain Imaging Center. “When you imagine yourself writing, it’s almost as if you’re actually writing, minus the motion problems.”

Richards and his staff are just starting to analyze the data they’ve collected from about three dozen subjects, but they have already found some surprising results.

“There are certain centers and neural pathways that we didn’t necessarily expect” to be activated, Richards said. “There are language pathways that are very well known. Then there are other motor pathways that allow you to move your hands. But how it all connects to the hand and motion is still being understood.”

Besides learning disorders, the inexpensive pen and pad also could help researchers study diseases in adults, especially conditions that cause motor control problems, such as stroke, multiple sclerosis and Parkinson’s disease.

“There are several diseases where you cannot move your hand in a smooth way or you’re completely paralyzed,” Richards said. “The beauty is it’s all getting recorded with every stroke, and this device would help us to study these neurological diseases.”

The work was supported by a grant from the National Institutes of Health. Other UW collaborators on the project are Peter Boord, Mary Askren and Virginia Berninger.

For more information, contact Reitz at freitz@uw.edu, or 206-543-9023.

Doree Armstrong | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>