Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-optic pen helps see inside brains of children with learning disabilities

19.06.2013
For less than $100, University of Washington researchers have designed a computer-interfaced drawing pad that helps scientists see inside the brains of children with learning disabilities while they read and write.

The device and research using it to study the brain patterns of children will be presented June 18 at the Organization for Human Brain Mapping meeting in Seattle.

A paper describing the tool, developed by the UW’s Center on Human Development and Disability, was published this spring in Sensors, an online open-access journal. “Scientists needed a tool that allows them to see in real time what a person is writing while the scanning is going on in the brain,” said Thomas Lewis, director of the center’s Instrument Development Laboratory. “We knew that fiber optics were an appropriate tool. The question was, how can you use a fiber-optic device to track handwriting?”

Center on Human Development and Disability

Todd Richards demonstrates the pen and pad device while inside the fMRI.

To create the system, Lewis and fellow engineers Frederick Reitz and Kelvin Wu hollowed out a ballpoint pen and inserted two optical fibers that connect to a light-tight box in an adjacent control room where the pen’s movement is recorded. They also created a simple wooden square pad to hold a piece of paper printed with continuously varying color gradients. The custom pen and pad allow researchers to record handwriting during functional magnetic resonance imaging, or fMRI, to assess behavior and brain function at the same time.
Other researchers have developed fMRI-compatible writing devices, but “I think it does something similar for a tenth of the cost,” Reitz said of the UW system. By using supplies already found in most labs (such as a computer), the rest of the supplies – pen, fiber optics, wooden pad and printed paper – cost less than $100.The device connects to a computer with software that records every aspect of the handwriting, from stroke order to speed, hesitations and liftoffs. Understanding how these physical patterns correlate with a child’s brain patterns can help scientists understand the neural connections involved.

Researchers studied 11- and 14-year-olds with either dyslexia or dysgraphia, a handwriting and letter-processing disorder, as well as children without learning disabilities. Subjects looked at printed directions on a screen while their heads were inside the fMRI scanner. The pen and pad were on a foam pad on their laps.

Subjects were given four-minute blocks of reading and writing tasks. Then they were asked to simply think about writing an essay (they later wrote the essay when not using the fMRI). Just thinking about writing caused many of the same brain responses as actual writing would.

“If you picture yourself writing a letter, there’s a part of the brain that lights up as if you’re writing the letter,” said Todd Richards, professor of radiology and principal investigator of the UW Integrated Brain Imaging Center. “When you imagine yourself writing, it’s almost as if you’re actually writing, minus the motion problems.”

Richards and his staff are just starting to analyze the data they’ve collected from about three dozen subjects, but they have already found some surprising results.

“There are certain centers and neural pathways that we didn’t necessarily expect” to be activated, Richards said. “There are language pathways that are very well known. Then there are other motor pathways that allow you to move your hands. But how it all connects to the hand and motion is still being understood.”

Besides learning disorders, the inexpensive pen and pad also could help researchers study diseases in adults, especially conditions that cause motor control problems, such as stroke, multiple sclerosis and Parkinson’s disease.

“There are several diseases where you cannot move your hand in a smooth way or you’re completely paralyzed,” Richards said. “The beauty is it’s all getting recorded with every stroke, and this device would help us to study these neurological diseases.”

The work was supported by a grant from the National Institutes of Health. Other UW collaborators on the project are Peter Boord, Mary Askren and Virginia Berninger.

For more information, contact Reitz at freitz@uw.edu, or 206-543-9023.

Doree Armstrong | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>