Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fat in organs and blood may increase risk of osteoporosis

Excess fat around the belly has recently been identified as a risk factor for bone loss. Now, a new study has determined that excess liver and muscle fat also may be detrimental to bone.

The study, published online in the journal Radiology, found that obese people with higher levels of fat in their liver, muscle tissue and blood also have higher amounts of fat in their bone marrow, putting them at risk for osteoporosis.

"Obesity was once thought to be protective against bone loss," said study lead author Miriam A. Bredella, M.D., a radiologist at Massachusetts General Hospital and associate professor of radiology at Harvard Medical School in Boston. "We have found that this is not true."

While other studies have examined the relationship between visceral fat and bone mineral density, this study looked at fat inside bone marrow, the spongy tissue inside the bones of the body that produces stem cells.

"In our study, we focused on bone marrow fat because that is where our stem cells can develop into osteoblasts—the cells responsible for bone formation—or fat cells," Dr. Bredella said. "We also wanted to look at the relationship between bone marrow fat and other fat components, such as those in the liver and muscle."

Dr. Bredella and colleagues used proton magnetic resonance spectroscopy (MRS), a technique that allows for precise measurement of fat, to examine 106 men and women, ages 19 to 45 years, who were obese based on body mass index measurements, but otherwise healthy.

"MRS has no radiation, is quick to perform and can quantify the amount of fat within bone marrow, muscle and liver," Dr. Bredella said.

The MRS results showed that people with more liver and muscle fat had higher levels of fat in their bone marrow, independent of body mass index, age and exercise status. HDL cholesterol, the "good" type of cholesterol that is associated with a lower risk of heart disease, was inversely associated with bone marrow fat content.

Higher levels of bone marrow fat put people at increased risk of fracture, according to Dr. Bredella.

"Bone marrow fat makes bones weak," she said. "If you have a spine that's filled with fat, it's not going to be as strong."

Triglycerides, the type of fat found in the blood, also had a positive correlation with bone marrow fat, possibly because they stimulate osteoclasts, a type of cell that breaks up bone tissue.

More research is needed to further illuminate the mechanism behind this differentiation of stem cells. Dr. Bredella noted that cell-signaling molecules called cytokines are known to promote the conversion of stem cells into fat.

"Obesity can shift stem cell lineage, resulting in more bone marrow fat," she said.

"Ectopic and Serum Lipid levels Are Positively Associated with Bone Marrow Fat in Obesity." Collaborating with Dr. Bredella were Corey M. Gill, B.S., Anu V. Gerweck, N.P., Melissa G. Landa, B.A., Vidhya Kumar, M.A., Scott M. Daley, B.A., Martin Torriani, M.D., Karen K. Miller, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 51,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (

For patient-friendly information on medical imaging, visit

Linda Brooks | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>