Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat and obesity gene also affects hip fracture

25.09.2013
Australian researchers have demonstrated a strong association between the FTO (fat and obesity) gene and hip fracture in women. While the gene is already well known to affect diabetes and body fat, this is the first study to show that its high-risk variant can increase the risk of hip fracture by as much as 82%.

The study, undertaken by Dr Bich Tran and Professor Tuan Nguyen from Sydney’s Garvan Institute of Medical Research, examined six gene variants (single nucleotide polymorphisms, or SNPs) of the FTO gene, taken from the DNA of 934 women in the Dubbo Osteoporosis Epidemiology Study (DOES). The women were all over 60, and their bone health was followed between 1989 and 2007. During that period, 102 women had hip fractures.

On average, the risk of fracture is about 11%. The study showed that if a woman has a low-risk genotype, or gene variant, the risk of fracture is 10%. If she has a high-risk genotype, it is 16%.

Now published online in Clinical Endocrinology, the authors believe that the findings have the potential to improve prediction of hip fracture. Known risk factors, also to be taken into account, include advancing age, falls, history of fracture, low bone mineral density, low body mass index (BMI) and genetic make-up.

“We found that for a woman of the same age and same clinical risk factors, those with the high-risk genotype have an increased risk of fracture of 82% - a very high effect in genetic terms,” said Professor Tuan Nguyen.

“A genome-wide association study published in 2007 suggested that genetic variants in the FTO gene were associated with variation in BMI. This led us to hypothesise that they might also be associated with variation in hip fracture risk.”

“The present study tested our hypothesis by examining the association between common variants in the FTO gene and hip fracture.”

“Our results showed a strong association with hip fracture, with some gene variants doubling the risk of fracture. Interestingly, this was independent of both the bone density and BMI of the women we studied.”

“We also found that the FTO gene expresses in bone cells, and may have something to do with bone turnover, or remodelling, although its exact mechanisms are unclear.”

“It’s important to emphasise that, while promising, our finding is a first step. It will need to be replicated in other studies, and its mechanisms clearly understood before it is useful in drug development.”

“At Garvan, we developed a Fracture Risk Calculator several years ago, www.fractureriskcalculator.com, using algorithms based on data from the Dubbo study. The calculator, which is fairly accurate and easy to use, is very popular with patients and doctors.”

“In the future, I would anticipate that genetic risk factors including this finding would be programmed into the calculator, making it an even more finely-tuned predictive tool.”

ABOUT GARVAN
The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with over 600 scientists, students and support staff. Garvan's main research areas are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.
Media enquiries should be directed to:
Alison Heather

Science Communications Manager

M: + 61 434 071 326

P: +61 2 9295 8128

E: a.heather "a" garvan.org.au

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>