Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat and obesity gene also affects hip fracture

25.09.2013
Australian researchers have demonstrated a strong association between the FTO (fat and obesity) gene and hip fracture in women. While the gene is already well known to affect diabetes and body fat, this is the first study to show that its high-risk variant can increase the risk of hip fracture by as much as 82%.

The study, undertaken by Dr Bich Tran and Professor Tuan Nguyen from Sydney’s Garvan Institute of Medical Research, examined six gene variants (single nucleotide polymorphisms, or SNPs) of the FTO gene, taken from the DNA of 934 women in the Dubbo Osteoporosis Epidemiology Study (DOES). The women were all over 60, and their bone health was followed between 1989 and 2007. During that period, 102 women had hip fractures.

On average, the risk of fracture is about 11%. The study showed that if a woman has a low-risk genotype, or gene variant, the risk of fracture is 10%. If she has a high-risk genotype, it is 16%.

Now published online in Clinical Endocrinology, the authors believe that the findings have the potential to improve prediction of hip fracture. Known risk factors, also to be taken into account, include advancing age, falls, history of fracture, low bone mineral density, low body mass index (BMI) and genetic make-up.

“We found that for a woman of the same age and same clinical risk factors, those with the high-risk genotype have an increased risk of fracture of 82% - a very high effect in genetic terms,” said Professor Tuan Nguyen.

“A genome-wide association study published in 2007 suggested that genetic variants in the FTO gene were associated with variation in BMI. This led us to hypothesise that they might also be associated with variation in hip fracture risk.”

“The present study tested our hypothesis by examining the association between common variants in the FTO gene and hip fracture.”

“Our results showed a strong association with hip fracture, with some gene variants doubling the risk of fracture. Interestingly, this was independent of both the bone density and BMI of the women we studied.”

“We also found that the FTO gene expresses in bone cells, and may have something to do with bone turnover, or remodelling, although its exact mechanisms are unclear.”

“It’s important to emphasise that, while promising, our finding is a first step. It will need to be replicated in other studies, and its mechanisms clearly understood before it is useful in drug development.”

“At Garvan, we developed a Fracture Risk Calculator several years ago, www.fractureriskcalculator.com, using algorithms based on data from the Dubbo study. The calculator, which is fairly accurate and easy to use, is very popular with patients and doctors.”

“In the future, I would anticipate that genetic risk factors including this finding would be programmed into the calculator, making it an even more finely-tuned predictive tool.”

ABOUT GARVAN
The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with over 600 scientists, students and support staff. Garvan's main research areas are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.
Media enquiries should be directed to:
Alison Heather

Science Communications Manager

M: + 61 434 071 326

P: +61 2 9295 8128

E: a.heather "a" garvan.org.au

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>