Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fat and obesity gene also affects hip fracture

Australian researchers have demonstrated a strong association between the FTO (fat and obesity) gene and hip fracture in women. While the gene is already well known to affect diabetes and body fat, this is the first study to show that its high-risk variant can increase the risk of hip fracture by as much as 82%.

The study, undertaken by Dr Bich Tran and Professor Tuan Nguyen from Sydney’s Garvan Institute of Medical Research, examined six gene variants (single nucleotide polymorphisms, or SNPs) of the FTO gene, taken from the DNA of 934 women in the Dubbo Osteoporosis Epidemiology Study (DOES). The women were all over 60, and their bone health was followed between 1989 and 2007. During that period, 102 women had hip fractures.

On average, the risk of fracture is about 11%. The study showed that if a woman has a low-risk genotype, or gene variant, the risk of fracture is 10%. If she has a high-risk genotype, it is 16%.

Now published online in Clinical Endocrinology, the authors believe that the findings have the potential to improve prediction of hip fracture. Known risk factors, also to be taken into account, include advancing age, falls, history of fracture, low bone mineral density, low body mass index (BMI) and genetic make-up.

“We found that for a woman of the same age and same clinical risk factors, those with the high-risk genotype have an increased risk of fracture of 82% - a very high effect in genetic terms,” said Professor Tuan Nguyen.

“A genome-wide association study published in 2007 suggested that genetic variants in the FTO gene were associated with variation in BMI. This led us to hypothesise that they might also be associated with variation in hip fracture risk.”

“The present study tested our hypothesis by examining the association between common variants in the FTO gene and hip fracture.”

“Our results showed a strong association with hip fracture, with some gene variants doubling the risk of fracture. Interestingly, this was independent of both the bone density and BMI of the women we studied.”

“We also found that the FTO gene expresses in bone cells, and may have something to do with bone turnover, or remodelling, although its exact mechanisms are unclear.”

“It’s important to emphasise that, while promising, our finding is a first step. It will need to be replicated in other studies, and its mechanisms clearly understood before it is useful in drug development.”

“At Garvan, we developed a Fracture Risk Calculator several years ago,, using algorithms based on data from the Dubbo study. The calculator, which is fairly accurate and easy to use, is very popular with patients and doctors.”

“In the future, I would anticipate that genetic risk factors including this finding would be programmed into the calculator, making it an even more finely-tuned predictive tool.”

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with over 600 scientists, students and support staff. Garvan's main research areas are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.
Media enquiries should be directed to:
Alison Heather

Science Communications Manager

M: + 61 434 071 326

P: +61 2 9295 8128

E: a.heather "a"

Alison Heather | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>