Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failed autoimmune suppression mechanism new clue to lupus

04.02.2011
Researchers at Dana-Farber Cancer Institute in Cambridge, Mass., in collaboration with Jackson Laboratory scientists, have identified a regulatory defect that drives lupus.

Correcting the defect “may represent an effective therapeutic approach to systemic lupus erythematosus-like autoimmune disease,” the researchers state in their research paper, published in the Proceedings of the National Academy of Sciences.

The research team was led by Harvey Cantor, M.D., chair of the department of cancer immunology and AIDS at Dana-Farber, in collaboration with the laboratory of Jackson Professor Derry Roopenian, Ph.D.

Autoimmune diseases develop when the immune system, which is supposed to identify and vanquish potentially dangerous infectious agents, instead attacks the individual's own body. Most autoimmune diseases strike specific organs, such as the pancreas in type 1 diabetes. Lupus, however, is a systemic disease in which abnormal antibodies are produced throughout the body, inflaming a variety of tissues and organs, including the skin, heart, lungs, kidneys and brain.

Follicular T helper (TFH) cells fuel B cells to produce antibodies, which can be useful in fighting infections. But in lupus, TFH fuel B cells that produce dangerous antibodies that attack normal tissues (autoantibodies). CD8+ T cells (“killer T cells”), on the other hand, normally attack and destroy only infected cells. Cantor and colleagues discovered that a small, but critically important, population of CD8+ T cells (less than 5 percent), plays a specialized role in protecting from lupus. These so-called CD8+ T regulatory, or Treg, cells are specially equipped to destoy TFH cells, and by doing so, prevent lupus from developing.

Using a mouse model for systemic lupus erythematosus in humans that was originally discovered at 30 years ago by Edwin Murphy at The Jackson Laboratory, the Dana-Farber researchers, working with Roopenian’s laboratory, found defects in CD8+ Treg activity.

The new paper, Roopenian explains, is the first to demonstrate the potential breakdown of this suppression mechanism in lupus. “Overcoming this defect,” he says, “offers a potential approach prevent lupus.”

The Jackson Laboratory is a nonprofit biomedical research institution based in Bar Harbor, Maine. Its mission is to discover the genetic basis for preventing, treating and curing human diseases, and to enable research and education for the global biomedical community.

Kim et al.: Surface phenotype and function of CD8+ T regulatory cells: Defective Ly49+ CD8+ T regulatory cell activity is a hallmark of B6-Yaa autoimmunity. Proceedings of the National Academy of Sciences, doi/10.1073/pnas.1018974108

Contact(s):
Joyce Peterson, 207-288-6058, The Jackson Laboratory

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>