Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New eye layer has possible link to glaucoma

17.02.2014
A new layer in the human cornea — discovered by researchers at The University of Nottingham last year — plays a vital role in the structure of the tissue that controls the flow of fluid from the eye, research has shown.

The findings, published in a paper in the British Journal of Ophthalmology, could shed new light on glaucoma, a devastating disease caused by defective drainage of fluid from the eye and the world's second leading cause of blindness.

The latest research shows that the new layer, dubbed Dua's Layer after the academic Professor Harminder Dua who discovered it, makes an important contribution to the sieve-like meshwork, the trabecular meshwork (TM), in the periphery of the cornea.

The TM is a wedge-shaped band of tissue that extends along the circumference of the angle of the anterior chamber of the eye. It is made of beams of collagen wrapped in a basement membrane to which trabecular cells and endothelial cells attach. The beams branch out randomly to form a 'meshwork'.

Pressure within the eye is maintained by the balance of aqueous fluid production by eye tissue called the ciliary body and drainage principally through the TM to the canal of Schlemm, a circular channel in the angle of the eye.

Defective drainage through the TM is an important cause of glaucoma, a condition that leads to raised pressure in the eye that can permanently affect sight. Around 1 to 2% of the world's population yearly have chronic glaucoma and globally around 45 million people have open angle glaucoma which can permanently damage the optic nerve — 10% of whom are blind.

The latest research by Professor Dua and colleagues in Academic Ophthalmology at The University of Nottingham sheds new light on the basic anatomy of Dua's Layer, which is just 15 microns thick but incredibly tough. Comprised of thin plates of collagen, it sits at the back of the cornea between the corneal stroma and Descemet's membrane.

By examining human donor eyes using electron microscopy, the researchers were able to look at Dua's Layer beyond the central part of the cornea to shed more light on its features at the extreme periphery of the cornea. They discovered that the collagen fibres of Dua's Layer also branch out to form a meshwork and that the core of TM is in fact an extension of Dua's Layer.

It is hoped the discovery will offer new clues on why the drainage system malfunctions in the eyes of some people, leading to high pressure.

Professor Dua said: "Many surgeons who perform lamellar corneal transplant recognise this layer as an important part of the surgical anatomy of the cornea. This new finding resulting from a study of the microanatomy of the periphery of the layer could have significance beyond corneal surgery."

The breakthrough discovery of Dua's Layer was first revealed in a paper in the academic journal Ophthalmology in June last year and was widely covered by the world's scientific and lay media.

The paper became the number one downloaded ophthalmology paper from the website ScienceDirect between July and September 2013 and was ranked the 11th most downloaded from the website for the whole of medicine and dentistry.

The latest research paper, The Collagen Matrix of the Human Trabecular Meshwork is an Extension of the Novel Pre-Descemet's layer (Dua's layer), can be viewed online (after the embargo lifts) at

http://dx.doi.org/10.1136/bjophthalmol -2013-304593

Harminder Dua | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>