Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New eye layer has possible link to glaucoma

17.02.2014
A new layer in the human cornea — discovered by researchers at The University of Nottingham last year — plays a vital role in the structure of the tissue that controls the flow of fluid from the eye, research has shown.

The findings, published in a paper in the British Journal of Ophthalmology, could shed new light on glaucoma, a devastating disease caused by defective drainage of fluid from the eye and the world's second leading cause of blindness.

The latest research shows that the new layer, dubbed Dua's Layer after the academic Professor Harminder Dua who discovered it, makes an important contribution to the sieve-like meshwork, the trabecular meshwork (TM), in the periphery of the cornea.

The TM is a wedge-shaped band of tissue that extends along the circumference of the angle of the anterior chamber of the eye. It is made of beams of collagen wrapped in a basement membrane to which trabecular cells and endothelial cells attach. The beams branch out randomly to form a 'meshwork'.

Pressure within the eye is maintained by the balance of aqueous fluid production by eye tissue called the ciliary body and drainage principally through the TM to the canal of Schlemm, a circular channel in the angle of the eye.

Defective drainage through the TM is an important cause of glaucoma, a condition that leads to raised pressure in the eye that can permanently affect sight. Around 1 to 2% of the world's population yearly have chronic glaucoma and globally around 45 million people have open angle glaucoma which can permanently damage the optic nerve — 10% of whom are blind.

The latest research by Professor Dua and colleagues in Academic Ophthalmology at The University of Nottingham sheds new light on the basic anatomy of Dua's Layer, which is just 15 microns thick but incredibly tough. Comprised of thin plates of collagen, it sits at the back of the cornea between the corneal stroma and Descemet's membrane.

By examining human donor eyes using electron microscopy, the researchers were able to look at Dua's Layer beyond the central part of the cornea to shed more light on its features at the extreme periphery of the cornea. They discovered that the collagen fibres of Dua's Layer also branch out to form a meshwork and that the core of TM is in fact an extension of Dua's Layer.

It is hoped the discovery will offer new clues on why the drainage system malfunctions in the eyes of some people, leading to high pressure.

Professor Dua said: "Many surgeons who perform lamellar corneal transplant recognise this layer as an important part of the surgical anatomy of the cornea. This new finding resulting from a study of the microanatomy of the periphery of the layer could have significance beyond corneal surgery."

The breakthrough discovery of Dua's Layer was first revealed in a paper in the academic journal Ophthalmology in June last year and was widely covered by the world's scientific and lay media.

The paper became the number one downloaded ophthalmology paper from the website ScienceDirect between July and September 2013 and was ranked the 11th most downloaded from the website for the whole of medicine and dentistry.

The latest research paper, The Collagen Matrix of the Human Trabecular Meshwork is an Extension of the Novel Pre-Descemet's layer (Dua's layer), can be viewed online (after the embargo lifts) at

http://dx.doi.org/10.1136/bjophthalmol -2013-304593

Harminder Dua | EurekAlert!
Further information:
http://www.nottingham.ac.uk

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>