Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to parental stress increases pollution-related lung damage in children

24.06.2011
Psychosocial stress appears to enhance the lung-damaging effects of traffic-related pollution (TRP) in children, according to new research from the Keck School of Medicine of the University of Southern California (USC) in Los Angeles.

The results will appear online ahead of the print edition of the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

"This is the first study demonstrating that growing up in a stressful household was associated with larger traffic pollution-induced lung deficits in healthy children compared to low stress households," said lead researcher Talat Islam, MBBS, assistant professor in the Division of Environmental Health at Keck School of Medicine.

Dr. Islam and colleagues administered a validated stress questionnaire, the Perceived Stress Scale (PSS), to the parents of nearly 1,400 children who participated in the USC Children's Health Study in Southern California. The children, ranging between 10-12 years old, were assessed for lung function and other respiratory health outcomes. Their exposure to traffic-related pollutants (TRP) was assessed by estimating exposure to nitric oxide (NO), nitrogen dioxide (NO2), and total oxides of nitrogen (NOX) at school and at home.

The researchers identified a number of socio-demographic factors associated with stress levels among the participants' parents. Hispanic and Asian parents had relatively higher levels of perceived stress than White parents. Characteristics associated with low socioeconomic levels were also associated with high stress, such as income below $30,000 a year, low parental education, lack of health insurance and lack of an air conditioner in the home. Similarly, exposures to traffic-related pollution varied widely within the study. NOX, for example, ranged from 6 to 108 ppb in different locations.

The researchers did not observe any statistically significant associations between parental stress alone and lung function levels in children. However, they found that as levels of traffic-related pollution increased among children who grew up in high-stress households, lung function decreased, but there was no corresponding lung effect in low- stress households. In high stress households, children had on average a 4.8 percent and 4.5 percent lower lung volume (FVC) and flow in the larger airways (FEV1) for each 22 ppb increase in NOX. "Based on the emerging data we expected to see a modifying effect of stress," said Dr. Islam. "However, we were surprised by the magnitude of effect."

The study also revealed the novel finding that lung function declines were related to both at-home and at-school exposures. "Children in this age group spend almost one-third of their day-time hours at school so exposure at school is an important contributor to total exposure," said Dr. Islam. "Perhaps children maintain the chronic and systemic effect of stress from their home environments as they go to school, further modifying their response to traffic exposure."

"One possible explanation for the stress-related pattern of TRP respiratory effects is the biological pathways common to effects of TRP and stress," said Dr. Islam. "Like air pollution, stress has been linked to both inflammation and oxidative damage at the cellular level, so this may explain the association."

While further research is needed on biological pathways, Dr. Islam believes the public health implications are clear: "The magnitude of the TRP-associated deficits in FEV1 and FVC levels in children growing up in high-stress households was larger than deficits reported for children exposed to maternal smoking during pregnancy and second-hand tobacco smoke," said Dr. Islam. "Our findings suggest that by regulating TRP levels around residential areas and schools, we could reduce the adverse effect of TRP on lung function among vulnerable children."

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: FEV1 FVC Medicine NOx TRP USC biological pathways exposure health services lung function

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>