Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emerging pharmaceutical platform may pose risks to retinal health

12.10.2011
Short interfering RNAs induce retinal degeneration via TLR3 and IRF3

According to new research by University of Kentucky investigators, an emerging pharmaceutical platform used in treating a variety of diseases may produce unintended and undesirable effects on eye function. The paper, "Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3", appears in the current online edition of the journal Molecular Therapy, a publication of the Nature Publishing Group and the American Society of Gene and Cell Therapy.

"Short-interfering RNA (siRNA) technology has been regarded as one of the most exciting emerging platforms for new pharmaceuticals, said Dr. Jayakrishna Ambati, professor of physiology, and professor and vice chair of ophthalmology and visual sciences at UK.

To this point, siRNA drugs have been the subject of clinical trials past and present for a variety of disorders including: cancers, viral respiratory infections, hypercholesterolemia, macular degeneration, diabetic retinopathy and glaucoma. Major obstacles to realizing the therapeutic potential of siRNAs include delivery of the drug into cells and a generic suppression of blood vessel growth through immune activation, as shown by a 2008 paper from the Ambati group in the journal Nature.

"We now show a new undesirable effect of siRNAs that are 21 nucleotides or longer in length: these siRNAs, regardless of their sequence or target, can cause retinal toxicity. By activating a new immune pathway consisting of the molecules TLR3 and IRF3, these siRNAs damage a critical layer of the retina called the retinal pigmented epithelium (RPE). Damage to the RPE cells by siRNAs can also lead to secondary damage to the rods and cones, which are light-sensing cells in the retina," said Ambati.

The scientists' findings indicate that caution should be applied when designing or using siRNAs intended for either direct application to the eye, or intended for use in a way that may allow the drug to access the eye.

"Another novel aspect of this research is that the RPE degeneration caused by siRNAs resembles the pathology seen in the advanced form of age-related macular degeneration called geographic atrophy, said Ambati. "As there are few models of geographic atrophy, which affects millions of people worldwide, this paper provides an important advance for research in developing new treatments for this disease."

Because the research shows that siRNAs shorter than 21 nucleotides in length can evade the TLR3-IRF3 off-target immune response, it may be possible to achieve therapeutic effects without retinal damage by designing shorter siRNAs.

The lead authors on this paper are Mark E. Kleinman, Assistant Professor of Ophthalmology & Visual Sciences, and Hiroki Kaneko and Won Gil Cho, also of UK. Other members of the UK research team in the Department of Ophthalmology & Visual Sciences include: Sami Dridi, Benjamin J. Fowler, Alexander D. Blandford, Yoshio Hirano, Valeria Tarallo, Bradley D. Gelfand, Sasha Bogdanovich and Judit Z. Baffi, Assistant Professor of Ophthalmology. Ambati is also the Dr. E. Vernon & Eloise C. Smith Endowed Chair in Macular Degeneration Research.

This research was supported by the National Eye Institute, the Doris Duke Charitable Foundation, the Burroughs Wellcome Fund, and Research to Prevent Blindness, and was a collaboration with Yonsei University in Korea, Nagoya University, Mie University, Kyoto University in Japan and the University of Utah.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>