Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How eating red meat can spur cancer progression

17.11.2008
Researchers at the University of California, San Diego School of Medicine, led by Ajit Varki, M.D., have shown a new mechanism for how human consumption of red meat and milk products could contribute to the increased risk of cancerous tumors.

Their findings, which suggest that inflammation resulting from a molecule introduced through consumption of these foods could promote tumor growth, are published online this week in advance of print publication in the Proceedings of the National Academy of Sciences (PNAS).

Varki, UC San Diego School of Medicine distinguished professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center, and colleagues studied a non-human cellular molecule called N-glycolylneuraminic acid (Neu5Gc). Neu5Gc is a type of glycan, or sugar molecule, that humans don't naturally produce, but that can be incorporated into human tissues as a result of eating red meat. The body then develops anti-Neu5Gc antibodies – an immune response that could potentially lead to chronic inflammation, as first suggested in a 2003 PNAS paper by Varki.

"We've shown that tumor tissues contain much more Neu5Gc than is usually found in normal human tissues," said Varki. "We therefore surmised that Neu5Gc must somehow benefit tumors."

It has been recognized by scientists for some time that chronic inflammation can actually stimulate cancer, Varki explained. So the researchers wondered if this was why tumors containing the non-human molecule grew even in the presence of Neu5Gc antibodies.

"The paradox of Neu5Gc accumulating in human tumors in the face of circulating antibodies suggested that a low-grade, chronic inflammation actually facilitated the tumor growth, so we set out to study that hypothesis," said co-author Nissi M.Varki, M.D., UCSD professor of pathology.

Using specially bred mouse models that lacked the Neu5Gc molecule – mimicking humans before the molecule is absorbed into the body through ingesting red meat – the researchers induced tumors containing Neu5Gc, and then administered anti-Neu5Gc antibodies to half of the mice. In mice that were given antibodies inflammation was induced, and the tumors grew faster. In the control mice that were not treated with antibodies, the tumors were less aggressive

Others have previously shown that humans who take non-steroidal anti-inflammatory drugs (commonly known as NSAIDs) have a reduced risk of cancer. Therefore, the mice with cancerous tumors facilitated by anti-Neu5Gc antibodies were treated with an NSAID. In these animals, the anti-inflammatory treatment blocked the effect of the Neu5Gc antibodies and the tumors were reduced in size.

"Taken together, our data indicate that chronic inflammation results from interaction of Neu5Gc accumulated in our bodies from eating red meat with the antibodies that circulate as an immune response to this non-human molecule – and this may contribute to cancer risk," said Varki.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>