Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early Warning System Provides Four-Month Forecast of Malaria Epidemics in Northwest India

Sea surface temperatures in the tropical South Atlantic Ocean can be used to accurately forecast, by up to four months, malaria epidemics thousands of miles away in northwestern India, a University of Michigan theoretical ecologist and her colleagues have found.

Colder-than-normal July sea surface temperatures in the tropical South Atlantic are linked to both increased monsoon rainfall and malaria epidemics in the arid and semi-arid regions of northwest India, including the vast Thar desert, according to Mercedes Pascual and her colleagues, who summarize their findings in a paper to be published online March 3 in the journal Nature Climate Change.

Previous efforts to forecast malaria outbreaks in northwest India have focused largely on monsoon-season rainfall totals as a predictor of the availability of breeding sites for the Anopheles mosquitoes that transmit the disease. That approach provides about a month of lead time before outbreaks occur.

The new forecasting tool should improve public health in the region by increasing warning time, thereby informing decisions about treatment preparedness and other disease-prevention strategies, said Pascual, the Rosemary Grant Collegiate Professor of Ecology and Evolutionary Biology and a Howard Hughes Medical Institute investigator. Planning for indoor insecticide spraying, one widely used control measure, could benefit from the additional lead time, for example.

"The climate link we have uncovered can be used as an indicator of malaria risk," Pascual said. "On the practical side, we hope these findings can be used as part of an early warning system."

After being nearly eradicated in India, malaria re-emerged there in the 1970s. An estimated 9 million malaria cases occur in India annually.

Malaria in its epidemic form occurs primarily on the margins of the geographical distribution of the disease, in places like arid northwest India where environmental conditions are only episodically suitable for sustaining Anopheles mosquitoes.

Motivated by the desire for more accurate prediction of malaria risk at longer lead times, Pascual and her colleagues analyzed epidemiological records of malaria incidence in northwest India and used statistical and computer climate models to test potential links between sea surface temperatures, monsoon rains in northwest India, and malaria epidemics there.

They found that most malaria epidemics in northwest India, which peak in October or November, occur when rainfall in the preceding summer monsoon season equals or exceeds a rainfall threshold presumably required to support the growth of Anopheles mosquitoes.

The researchers looked for a correlation between global sea-surface temperatures and epidemic malaria in northwest India. They identified a broad region in the tropical South Atlantic, west of Africa, where cooler-than-normal sea-surface temperatures are significantly associated with increases in both monsoon rainfall and malaria incidence in northwest India.

July sea-surface temperatures in the tropical South Atlantic proved to be remarkably accurate at predicting malaria outbreaks in northwest India during the following fall. In a retrospective analysis of malaria epidemics in the region between 1985 and 2006, the researchers found that July sea surface temperatures correctly anticipated nine out of 11 epidemic years and 12 out of 15 non-epidemic years.

"For this region of India and for this window of time in recent decades, the tropical South Atlantic appears to play a dominant role on rainfall and, through rainfall, on malaria," Pascual said.

Malaria is caused by the Plasmodium parasite, which is transmitted via the bites of infected mosquitoes. In the human body, the parasites multiply in the liver and then infect red blood cells.

Pascual's co-authors on the Nature Climate Change paper are B.A. Cash of the Center for Ocean-Land-Atmosphere Studies, X. Rodó of the Institució Catalana de Recerca i Estudis Avançats and the Institut Català de Ciències del Clima in Spain, J. Ballester of the Institució Catalana de Recerca i Estudis Avançats in Spain, M.J. Bouma of the London School of Hygiene and Tropical Medicine, A. Baeza of the U-M Department of Ecology and Evolutionary Biology, and R. Dhiman of the National Institute of Malaria Research in New Delhi, India.

The work was supported by the National Institute of Malaria Research in New Delhi, U-M's Graham Sustainability Institute, and by grants from the National Oceanic and Atmospheric Administration, the National Science Foundation and NASA. The National Center for Atmospheric Research provided high-performance computing support.

Mercedes Pascual:

EDITORS: High-res photos available at

Jim Erickson | Newswise
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>