Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke scientists create airway spheres to study lung diseases

31.07.2009
Using both animal and human cells, Duke University Medical Center scientists have demonstrated that a single lung cell can become one of two very different types of airway cells, which could lead to a better understanding of lung diseases.

From this single "basal" cell, a small, squat stem cell that divides to replenish the lung lining layer, scientists created 3-D hollow spheres that were lined inside with both ciliary and secretory cells.

This 3-D model can be used to study dynamic processes underlying lung diseases, including cancer, said Brigid Hogan, Ph.D., chair of the Duke Department of Cell Biology and senior researcher of the study, which was published in PNAS Early Edition.

"Now that we have this 3-D model and information about the gene expression 'signature' of basal cells, we are in a strong position to see what happens when lung-cell behavior goes awry," Hogan said. "We might, for example, be able to activate an oncogene (a cancer-causing gene) or other factors to see how lung cancer might develop in the airways. Amazingly, almost nothing is known about lung basal cells, which are so important to health and make up nearly a third of the cells in the human airways."

Normally, basal stem cells maintain the airways by turning over slowly into new ciliated cells and secretory cells. Ciliated cells resemble waving brooms that sweep along particles and distribute secretions that are needed in the airways, and secretory cells provide the antibacterial and lubricating secretions. These two types of cells are neatly arranged in equal proportions in healthy lung airways. However, when lungs are affected by maladies like cancer, chemical damage, cystic fibrosis or asthma, the balance of these cells can be thrown off.

By learning the role these basal cells play in maintaining the airway tissue, the scientists were able to create an entirely new way to study them.

"We put a lot of effort into developing this model, so that we and other groups can test the ability of individual airway progenitor cells to divide and differentiate under defined conditions," said lead author Jason Rock, Ph.D., a postdoctoral associate in the Duke Department of Cell Biology. "Now we can change the culture conditions to investigate mechanisms that underlie pathological conditions, including chronic asthma and cancer."

The work was a collaboration of cell biologists, Mark Onaitis, M.D., of the Department of Surgery at Duke University Medical Center, and Scott H. Randell, PhD., of the Cystic Fibrosis/Pulmonary Research and Treatment Center at the University of North Carolina in Chapel Hill.

The scientists isolated basal cells, set each separately in a gel suspension, and observed the cells growing into a hollow sphere as they divided. Analysis shows that the basal cells remain on the outside of the sphere, while inside the hollow was lined in an equal arrangement of cilial and secretory cells, as in nature.

"This basal cell is making daughters, which are polarized and retain their orientation so that they will form a structure with luminal (airway lining) cells on the inside," Hogan said. "Only about 5 percent of the basal cells we isolated and put into gel formed these spheres; perhaps these are the ones that are normally ready to leap into action when they are challenged."

After painstakingly sorting individual green fluorescent mouse basal cells from the other lung tissue cells, the scientists studied the genes expressed in these mouse cells using microarray technology. They found more than 600 genes preferentially expressed in the basal cells compared with the other cells.

"We found that many of these genes are similar to genes expressed in stem cells in other tissues," Hogan said. "We think these genes are helping these cells to stay 'quiet' and keep them from dividing until they get the right signal."

The researchers also found that one gene expressed in the basal cells encodes a surface receptor, also found on human lung basal cells. "This meant we were able to use a labeled antibody against this receptor to efficiently extract human lung basal cells to create the human bronchospheres for study," Hogan said.

Other authors included Emma Rawlins, Yun Lu, Cheryl P. Clark, and Yan Xue of the Duke Department of Cell Biology. This research is supported by grants from the National Institutes of Health, a Howard Hughes Medical Institute Early Career Grant and a Parker B. Francis Fellowship.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>