Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug shows promise in treating indolent non-Hodgkin lymphomas

23.01.2014
Idelalisib could be on the market later this year, pending FDA approval

Slow-growing, or indolent, non-Hodgkin lymphomas are difficult to treat, with most patients relapsing repeatedly and the disease becoming increasingly resistant to therapy over time.

But a new drug made by Seattle-based Gilead Sciences Inc. appears to offer hope for fighting the disease, according to a study published online today in the New England Journal of Medicine in advance of its March 13 print issue.

The phase 2 study involved 125 patients aged 33 to 87 with indolent non-Hodgkin lymphoma (iNHL) who had not responded to conventional treatments or had relapsed within six months of therapy. The patients, who were from the Seattle area, around the United States and Europe, were given a twice-daily dose of idelalisib, a highly selective oral drug that inhibits phosphoinositide 3-kinase (PI3K) delta. P13K deltas are a family of enzymes seen in many types of B-cell malignancies.

Following treatment with idelalisib, tumor size shrunk by at least half in 57 percent of the patients and 6 percent had no measurable evidence of cancer.

"These are patients who had exhausted current standard therapies," said Ajay Gopal, M.D., a member of Fred Hutchinson Cancer Research Center's Clinical Research Division and the study's lead and corresponding author. "In terms of effective therapy available, there really wasn't much left."

Indolent non-Hodgkin lymphomas comprise about one-third of all cases of NHL. About 20,000 people in the United States were diagnosed with iNHL in 2012 and approximately 7,000 died of the disease. The standard treatment for iNHL is a combination of rituximab, a drug that targets the protein CD20 found on B cells, and chemotherapy.

While conventional treatment can be initially effective, iNHLs relapse over time and can lead to life-threatening complications such as infections and marrow failure. And unlike the toxic effects of chemotherapy, the most common side effects among patients in the trial were diarrhea and colitis, which occurred in a minority of participants and could usually be managed with dosage adjustments.

The NEJM paper, which was funded by Gilead Sciences and involved co-authors from 17 institutions in the U.S. and Europe, is the first publication of clinical data on idelalisib. The U.S. Food and Drug Administration (FDA) accepted the drug for review in early January and also gave it a Breakthrough Therapy designation for treatment of relapsed chronic lymphocytic leukemia (CLL) based on the results of another clinical trial.

Gopal, who helped write the protocol for the trial and treated many of the patients involved, said while it doesn't appear that the drug is curative, it holds tremendous promise for helping to control the disease for long periods of time.

"I think there's going to be a lot of interest in it," he said.

Gopal, also an associate professor at the University of Washington School of Medicine and the director of clinical research for hematology at Seattle Cancer Care Alliance, said depending on the FDA review, idelalisib could be approved for clinical use later this year. Such drugs, he said, represent a highly targeted and less harmful approach to treating cancer.

"Chemotherapy is a very blunt instrument," he said. "This is much more specific."

Deborah Bach | EurekAlert!
Further information:
http://www.fredhutch.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>