Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug shows promise in treating indolent non-Hodgkin lymphomas

23.01.2014
Idelalisib could be on the market later this year, pending FDA approval

Slow-growing, or indolent, non-Hodgkin lymphomas are difficult to treat, with most patients relapsing repeatedly and the disease becoming increasingly resistant to therapy over time.

But a new drug made by Seattle-based Gilead Sciences Inc. appears to offer hope for fighting the disease, according to a study published online today in the New England Journal of Medicine in advance of its March 13 print issue.

The phase 2 study involved 125 patients aged 33 to 87 with indolent non-Hodgkin lymphoma (iNHL) who had not responded to conventional treatments or had relapsed within six months of therapy. The patients, who were from the Seattle area, around the United States and Europe, were given a twice-daily dose of idelalisib, a highly selective oral drug that inhibits phosphoinositide 3-kinase (PI3K) delta. P13K deltas are a family of enzymes seen in many types of B-cell malignancies.

Following treatment with idelalisib, tumor size shrunk by at least half in 57 percent of the patients and 6 percent had no measurable evidence of cancer.

"These are patients who had exhausted current standard therapies," said Ajay Gopal, M.D., a member of Fred Hutchinson Cancer Research Center's Clinical Research Division and the study's lead and corresponding author. "In terms of effective therapy available, there really wasn't much left."

Indolent non-Hodgkin lymphomas comprise about one-third of all cases of NHL. About 20,000 people in the United States were diagnosed with iNHL in 2012 and approximately 7,000 died of the disease. The standard treatment for iNHL is a combination of rituximab, a drug that targets the protein CD20 found on B cells, and chemotherapy.

While conventional treatment can be initially effective, iNHLs relapse over time and can lead to life-threatening complications such as infections and marrow failure. And unlike the toxic effects of chemotherapy, the most common side effects among patients in the trial were diarrhea and colitis, which occurred in a minority of participants and could usually be managed with dosage adjustments.

The NEJM paper, which was funded by Gilead Sciences and involved co-authors from 17 institutions in the U.S. and Europe, is the first publication of clinical data on idelalisib. The U.S. Food and Drug Administration (FDA) accepted the drug for review in early January and also gave it a Breakthrough Therapy designation for treatment of relapsed chronic lymphocytic leukemia (CLL) based on the results of another clinical trial.

Gopal, who helped write the protocol for the trial and treated many of the patients involved, said while it doesn't appear that the drug is curative, it holds tremendous promise for helping to control the disease for long periods of time.

"I think there's going to be a lot of interest in it," he said.

Gopal, also an associate professor at the University of Washington School of Medicine and the director of clinical research for hematology at Seattle Cancer Care Alliance, said depending on the FDA review, idelalisib could be approved for clinical use later this year. Such drugs, he said, represent a highly targeted and less harmful approach to treating cancer.

"Chemotherapy is a very blunt instrument," he said. "This is much more specific."

Deborah Bach | EurekAlert!
Further information:
http://www.fredhutch.org

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>