Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug cuts risk of deadly transplant side effect in half

10.12.2012
First study in humans shows promise for preventing graft-versus-host disease following bone marrow transplant

A new class of drugs reduced the risk of patients contracting a serious and often deadly side effect of lifesaving bone marrow transplant treatments, according to a study from researchers at the University of Michigan Comprehensive Cancer Center.

The study, the first to test this treatment in people, combined the drug vorinostat with standard medications given after transplant, resulting in 21 percent of patients developing graft-vs.-host disease compared to 42 percent of patients who typically develop this condition with standard medications alone.

Results of the study will be presented Dec. 9 at the 54th Annual Meeting of the American Society of Hematology.

"Graft-vs.-host disease is the most serious complication from transplant that limits our ability to offer it more broadly. Current prevention strategies have remained mostly unchanged over the past 20 years. This study has us cautiously excited that there may be a potential new way to prevent this condition," says lead study author Sung Choi, M.D., assistant professor of pediatrics at the U-M Medical School.

Vorinostat is currently approved by the U.S. Food and Drug Administration to treat certain types of cancer. But U-M researchers, led by senior study author Pavan Reddy, M.D., found in laboratory studies that the drug had anti-inflammatory effects as well – which they hypothesized could be useful in preventing graft-vs.-host disease, a condition in which the new donor cells begin attacking other cells in the patient's body.

Choi will present data on the first 47 patients enrolled on the study at the University of Michigan Comprehensive Cancer Center and Washington University. Participants were older adults who were undergoing a reduced-intensity bone marrow transplant with cells donated from a relative. Patients received standard medication used after a transplant to prevent graft-vs.-host disease. They also received vorinostat, which is given as a pill taken orally.

The researchers found vorinostat was safe and tolerable to give to this vulnerable population, with manageable side effects. In addition, rates of patient death and cancer relapse among the study participants were similar to historical averages.

The results mirror those found in the laboratory using mice. Reddy, an associate professor of internal medicine at the U-M Medical School, has been studying this approach in the lab for eight years.

"This is an entirely new approach to preventing graft-vs.-host disease," Choi says. Specifically, vorinostat targets histone deacetylases, which are different from the usual molecules targeted by traditional treatments.

"Vorinostat has a dual effect as an anti-cancer and an anti-inflammatory agent. That's what's potentially great about using it to prevent graft-vs.-host, because it may also help prevent the leukemia from returning," Choi says.

The study is continuing to enroll participants. The researchers hope next to test vorinostat in patients receiving a transplant from an unrelated donor, which carries an even greater risk of graft-vs.-host disease. This approach is not currently available outside of this clinical trial.

Note for patients: If you would like more information about the current clinical trial or about other treatment options at the University of Michigan Comprehensive Cancer Center, call the Cancer AnswerLine at 800-865-1125.

Additional authors:

From U-M: Thomas M. Braun, Ph.D.; Guoqing Hou, Ph.D.; John E. Levine, M.D., M.S.; Yaping Sun, M.D., Ph.D.; Daniel R. Couriel, M.D.; Lawrence Chang, M.D., M.P.H.; John M. Magenau, M.D.; Attaphol Pawarode; Carrie Kitko, M.D.; Sophie Paczesny, M.D., Ph.D.; Edward M. Peres, M.D.; Gregory A. Yanik, M.D.; Michael Lehmann, M.D.; and James L.M. Ferrara, M.D., D.Sc. From Washington University, St. Louis: John F. DiPersio, M.D., Ph.D., and Keith Stockerl-Goldstein, M.D. From Mie University Hospital, Japan: Isao Tawara, M.D., Ph.D. From Sutter East Bay Medical Foundation, Berkeley, Calif.: Oleg I. Krijanovski, Ph.D., M.D. From University of Alabama, Birmingham: Shin Mineishi, M.D. From University of Colorado Health Science Center: Charles A. Dinarello, M.D.

Funding: National Institutes of Allergy and Infectious Diseases grant A1091623-01, National Cancer Institute grant CA143379, Leukemia and Lymphoma Society, St. Baldrick's Foundation.

Disclosure: None

Reference: 54th Annual Meeting of the American Society of Hematology, Atlanta, Dec. 8-11, 2012. Abstract No. 740, Targeting Histone Deacetylases as a New Strategy for Graft Versus Host Disease Prevention.

Resources:

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, www.mcancer.org
Clinical trials at U-M, www.UMClinicalStudies.org/cancer

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.mcancer.org
http://www.UMClinicalStudies.org/cancer

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>