Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dramatic improvement in Parkinson disease symptoms

Successful intranasal delivery of stem cells to the brains of rats with Parkinson disease yielded significant improvement in motor function and reversed the dopamine deficiency characteristic of the disease.

These highly promising findings, reported in Rejuvenation Research, a peer-reviewed journal published by Mary Ann Liebert, Inc. highlight the potential for a noninvasive approach to cell therapy delivery in Parkinson disease–a safer and effective alternative to surgical transplantation of stem cells. The article is available free online.

In this groundbreaking study, mesenchymal stem cells (MSCs) delivered via the nose preferentially migrated to the brain and were able to survive for at least 6 months. Substantial improvement in motor function—up to 68% of normal—was reported in the MSC-treated rat model of Parkinson disease. Levels of the neurotransmitter dopamine were significantly higher in affected rat brain regions exposed to MSCs compared to the non-treated brain regions, reported Lusine Danielyan and an international team of researchers from University Hospital of Tübingen, University of Göttingen Medical School, and University of Tübingen (Stuttgart, Germany; HealthPartners Research Foundation, St. Paul, MN; German University in Cairo, Egypt; Harvard University, Cambridge, MA; Institute of Molecular Biology NAS RA, Yerevan, Armenia; and Geneva University Hospital, Switzerland.

The authors present their findings in the article, "Therapeutic Efficacy of Intranasally Delivered Mesenchymal Stem Cells in a Rat Model of Parkinson Disease." They explain that intranasal delivery of MSCs avoids the tissue trauma and related inflammation and brain swelling associated with surgical implantation of therapeutic stem cells. Importantly, this noninvasive delivery method would also make it possible to provide repeated stem cell treatments over time.

Rejuvenation Research, the Official Journal of the European Society of Preventive, Regenerative and Anti-Aging Medicine (ESAAM) and the World Federation & World Virtual Institute of Preventive & Regenerative Medicine (PYRAMED), is an authoritative, peer-reviewed journal published bimonthly in print and online. Led by Editor-in-Chief Aubrey D.N.J. de Grey, PhD, SENS Foundation, Cambridge, UK, the Journal publishes cutting-edge work on the development of rejuvenation therapies in the laboratory and clinic and explores the molecular and cellular mechanisms behind these novel therapeutic approaches. Tables of content and a free sample issue may be viewed online.

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development; Cellular Reprogramming; DNA and Cell Biology; and Human Gene Therapy. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 60 journals, books, and newsmagazines is available at our website.

Vicki Cohn | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>