Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA technique leads to a breakthrough in child cancer research

22.02.2010
Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden and Karolinska Institutet have used novel technology to reveal the different genetic patterns of neuroblastoma, an aggressive form of childhood cancer. This discovery may lead to significant advances in the treatment of this malignant disease, which mainly affects small children.

The article is being published in the respected scientific journal, Proceedings of the National Academy of Sciences (PNAS). The study includes 165 children with neuroblastoma, most of whom developed the disease before the age of five. These children have been monitored for over 20 years by two research teams led by professors Tommy Martinsson, of the Sahlgrenska Academy, and Per Kogner of Karolinska Institutet.

Neuroblastoma is a nerve cell cancer that has defects in certain chromosomes. If the tumour has a characteristic defect on chromosome 11, it is very aggressive and difficult to cure.

"We found that the children who develop this type of neuroblastoma are twice as old at the onset of the disease as children who develop other types of neuroblastoma. This type progresses more slowly and is more difficult to treat," says Helena Carén, a researcher at the Department of Clinical Genetics at the Sahlgrenska Academy.

By using the latest genetic techniques, the researchers have succeeded in analysing the DNA of tumour cells and identifying chromosomal defects, enabling the identification of sub-groups of the most aggressive neuroblastomas. The next step is to identify their weak points genetically in order to develop better treatment.

"We call this personalized medicine, because the treatment is based on the genetic profile of the patient, or in this case, of the tumour cells," says Tommy Martinsson, professor of genetics at the Department of Clinical Genetics at the Sahlgrenska Academy.

Per Kogner, professor of paediatric oncology at Karolinska Institutet, reiterates that their discovery will now allow a variety of tailor-made treatments to be developed, saving the lives of more children.

"The analytical method we have used in our research is already being used for clinical assessment of every neuroblastoma tumour in the country, which means that we can now make more accurate diagnoses," says Helena Carén.

The study was carried out with the support of the Swedish Childhood Cancer Foundation and the Swedish Cancer Society.

ABOUT NEUROBLASTOMA
Neuroblastoma is a form of cancer that affects small children, most of whom are diagnosed before they reach their fifth birthday. It is the third commonest form of cancer in children, after leukaemia and brain tumours. About 20 Swedish children are affected every year, and the risk of developing the disease is the same worldwide. Neuroblastoma is a tumour of nerve cells. It appears during the development phase of the sympathetic nervous system. Children may have no symptoms at all, and sometimes a lump is the first sign of the disease noticed by parents or doctors. As the tumour grows or spreads, it may press on other organs and cause symptoms. The available treatments include surgery, chemotherapy, radiotherapy, high-dose therapy combined with stem cell support, and vitamin A.

For further information, please contact:

Helena Carén, doctor of medical science at the Sahlgrenska Academy, telephone +46 (0)31-343 41 57, +46 (0)706- 82 32 62, helena.caren@clingen.gu.se

Tommy Martinsson, professor and chief geneticist (principal study investigator) at the Sahlgrenska Academy, tel +46 (0)31- 343 48 03, tel +46 (0)739-81 71 12 tommy.martinsson@clingen.gu.se

Per Kogner, professor and paediatric oncologist at the Astrid Lindgren Children's Hospital and researcher at Karolinska Institutet, +46 (0)8-5177 35 34, +46 (0)70-571 39 07, per.kogner@ki.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.pnas.org/content/early/2010/02/08/0910684107.full.pdf

Further reports about: Cancer DNA Genetics Institutet Karolinska brain tumour nerve cell tumour cells

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>