Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery may lead to targeted heart disease treatments

University of Guelph researchers have found the location and effect of abnormal heart proteins that can cause cardiac failure, a discovery that points to potential new ways to treat the most costly health problem in the world.

The study appears today in PLoS ONE, a peer-reviewed international journal published by the Public Library of Science. It is available online:

"In order to cure heart disease, you have to understand its fundamental properties," said study author John Dawson, a molecular and cellular biology professor.

"So we looked at variants of naturally occurring proteins that are found in people with heart disease."

The research team included graduate students Maureen Mundia, Ryan Demers, Melissa Chow and Alexandru Perieteanu.

Heart disease and stroke is the leading cause of death in Canada, killing tens of thousands each year. Treating cardiovascular disease costs more than $20 billion a year in physician and hospital costs, lost wages and reduced productivity.

The study examined gene abnormalities for the actin protein and its role in heart failure.

As the most abundant protein in the body, actin helps in vital processes including muscle movement.

Abnormal actin genes are linked to heart diseases such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). HCM causes excessive thickening of the heart muscle and can lead to sudden cardiac death. Under DCM, the heart weakens and enlarges, and cannot pump blood efficiently.

Scientists had already linked HCM and DCM to 14 actin gene abnormalities. "But this is the first time that many of these variants have been studied at the molecular level," Dawson said.

Understanding the molecular deficiencies of actin variants is a starting point for figuring out the underlying mechanisms of heart diseases, he said.

The researchers inserted human genes into insect cells to make heart muscle proteins for study. Dawson's lab is one of the few in the world able to do this work.

They then mapped where on the abnormalities occurred and their effects. Three were in spots that resulted in problems with heart contractions; three others were in locations that affected stability and efficiency.

Dawson hopes their work will help in developing more targeted treatments.

"Heart disease has many different forms and variants. If we can design specific therapies that address the precise mechanisms of the things going on — treat the root cause rather than the whole system — then we can improve the quality of life for people."

Dawson belongs to a growing cardiovascular research group at the University of Guelph, one of few such groups worldwide studying cardiovascular disease from single molecules to animal models.

"It makes Guelph a unique place to do this research," he said.

John Dawson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>