Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may lead to targeted heart disease treatments

09.05.2012
University of Guelph researchers have found the location and effect of abnormal heart proteins that can cause cardiac failure, a discovery that points to potential new ways to treat the most costly health problem in the world.

The study appears today in PLoS ONE, a peer-reviewed international journal published by the Public Library of Science. It is available online: http://dx.plos.org/10.1371/journal.pone.0036821

"In order to cure heart disease, you have to understand its fundamental properties," said study author John Dawson, a molecular and cellular biology professor.

"So we looked at variants of naturally occurring proteins that are found in people with heart disease."

The research team included graduate students Maureen Mundia, Ryan Demers, Melissa Chow and Alexandru Perieteanu.

Heart disease and stroke is the leading cause of death in Canada, killing tens of thousands each year. Treating cardiovascular disease costs more than $20 billion a year in physician and hospital costs, lost wages and reduced productivity.

The study examined gene abnormalities for the actin protein and its role in heart failure.

As the most abundant protein in the body, actin helps in vital processes including muscle movement.

Abnormal actin genes are linked to heart diseases such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). HCM causes excessive thickening of the heart muscle and can lead to sudden cardiac death. Under DCM, the heart weakens and enlarges, and cannot pump blood efficiently.

Scientists had already linked HCM and DCM to 14 actin gene abnormalities. "But this is the first time that many of these variants have been studied at the molecular level," Dawson said.

Understanding the molecular deficiencies of actin variants is a starting point for figuring out the underlying mechanisms of heart diseases, he said.

The researchers inserted human genes into insect cells to make heart muscle proteins for study. Dawson's lab is one of the few in the world able to do this work.

They then mapped where on the abnormalities occurred and their effects. Three were in spots that resulted in problems with heart contractions; three others were in locations that affected stability and efficiency.

Dawson hopes their work will help in developing more targeted treatments.

"Heart disease has many different forms and variants. If we can design specific therapies that address the precise mechanisms of the things going on — treat the root cause rather than the whole system — then we can improve the quality of life for people."

Dawson belongs to a growing cardiovascular research group at the University of Guelph, one of few such groups worldwide studying cardiovascular disease from single molecules to animal models.

"It makes Guelph a unique place to do this research," he said.

John Dawson | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>