Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may lead to safer drinking water, cheaper medicine

27.05.2010
A discovery that may pave the way to helping reduce health hazards such as E. coli in water could also make chemicals and drugs such as insulin cheaper to produce and their production more environmentally friendly.

By creating a three-dimensional model, Queen's University biochemistry professor Zongchao Jia and post-doctoral student Jimin Zheng discovered exactly how the AceK protein acts as a switch in some bacteria to bypass the energy-producing cycle that allows bacteria like E. coli and salmonella to go into a survival mode and adapt to low-nutrient environments, such as water.

The unique feature of this discovery is that the switching on and off take place in the same location of the protein. Normally these two opposing activities would happen in two different 'active sites'.

"From a protein function point of view, this is unique and has never been discovered anywhere else," says Professor Jia.

The discovery opens the door for scientists to identify a molecule that can keep the bypass switch from turning on so bacteria will die in water. As a result, drinking water would be cleaner and the incident of water bacterial contamination, such as the Walkerton tragedy, could be reduced.

"While other organisms cannot survive without nutrients, the bypass controlled by AceK allows the bacteria to live and cause health problems," says Professor Jia.

Conversely, discovering a molecule to keep the bypass switch turned on could produce a supply of the bacteria biotechnology companies use to produce compounds, such as insulin. Instead of using glucose in the fermenting process, companies could use less nutritional and cheaper acetate.

The cost difference would be tremendous and the process would produce less carbon dioxide making the process much more environmentally friendly.

"So we haven't found a cure to stop diseases like E. coli water contamination, but we've provided a template for people to design a molecule that will disable its ability to survive in water," says Professor Jia. "It's like we have discovered how a lock works and now all we need is to design a key."

The findings of Drs. Jia and Zheng are published today in the academic journal Nature.

Queen's University is located in Kingston, Ontario, Canada.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>