Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings scientists one step closer to understanding tendon injury

08.01.2014
Research led by Queen Mary University of London has discovered a specific mechanism that is crucial to effective tendon function, which could reveal why older people are more prone to tendon injury.

Tendons, such as the Achilles, connect muscle to bone, and are loaded repeatedly during movement. When exposed to particularly high loads, this can cause injury in some individuals. The risk of injury increases with age, but scientists have never fully understood why.

Tendon injury is common in horses as well as humans, and the team, working together with scientists from the University of Liverpool, University College London and the University of East Anglia, used tendons from horses already deceased to understand injury risk, and demonstrate the mechanism in action.

The research team found that fascicles – the subunit that makes up tendons – are coiled like a spring, or helix. They have shown that the helix structure enables tendons to stretch and recover, with results suggesting that damage to the helix stops the tendon working properly.

“The helical shape of the fascicles seems to be critical in maintaining tendon elasticity,” explains co-author Dr Hazel Screen, a Reader in medical engineering at Queen Mary’s School of Engineering and Materials Science.

“Repetitive loading causes the fascicles to unwind and be less effective, triggering them to become damaged or leading to injury.”

The team also showed how ageing affects the helix.

Co-author Dr Chavaunne Thorpe said: “The findings suggest that the helix structure is altered with age resulting in a decreased ability to withstand further loading and so making aged tendons more prone to injury.”

This work was funded by the Horserace Betting Levy Board and is published in the Royal Society journal Interface.

‘Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading’ is published in the Royal Society Journal Interface on Wednesday 8 January 2014.

For more information, a copy of the paper or to arrange interviews with the authors, please contact:

Neha Okhandiar
Public Relations Manager
Queen Mary University of London
020 7882 7927
n.okhandiar@qmul.ac.uk
Queen Mary University of London
Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.
A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.
Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education.
The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar | Queen Mary University of London
Further information:
http://www.qmul.ac.uk/media

Further reports about: Achilles Science TV tendon elasticity tendon function tendon injury

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>