Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings scientists one step closer to understanding tendon injury

08.01.2014
Research led by Queen Mary University of London has discovered a specific mechanism that is crucial to effective tendon function, which could reveal why older people are more prone to tendon injury.

Tendons, such as the Achilles, connect muscle to bone, and are loaded repeatedly during movement. When exposed to particularly high loads, this can cause injury in some individuals. The risk of injury increases with age, but scientists have never fully understood why.

Tendon injury is common in horses as well as humans, and the team, working together with scientists from the University of Liverpool, University College London and the University of East Anglia, used tendons from horses already deceased to understand injury risk, and demonstrate the mechanism in action.

The research team found that fascicles – the subunit that makes up tendons – are coiled like a spring, or helix. They have shown that the helix structure enables tendons to stretch and recover, with results suggesting that damage to the helix stops the tendon working properly.

“The helical shape of the fascicles seems to be critical in maintaining tendon elasticity,” explains co-author Dr Hazel Screen, a Reader in medical engineering at Queen Mary’s School of Engineering and Materials Science.

“Repetitive loading causes the fascicles to unwind and be less effective, triggering them to become damaged or leading to injury.”

The team also showed how ageing affects the helix.

Co-author Dr Chavaunne Thorpe said: “The findings suggest that the helix structure is altered with age resulting in a decreased ability to withstand further loading and so making aged tendons more prone to injury.”

This work was funded by the Horserace Betting Levy Board and is published in the Royal Society journal Interface.

‘Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading’ is published in the Royal Society Journal Interface on Wednesday 8 January 2014.

For more information, a copy of the paper or to arrange interviews with the authors, please contact:

Neha Okhandiar
Public Relations Manager
Queen Mary University of London
020 7882 7927
n.okhandiar@qmul.ac.uk
Queen Mary University of London
Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.
A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.
Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education.
The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar | Queen Mary University of London
Further information:
http://www.qmul.ac.uk/media

Further reports about: Achilles Science TV tendon elasticity tendon function tendon injury

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>