Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries on depression

29.02.2012
During depression, the brain becomes less plastic and adaptable, and thus less able to perform certain tasks, like storing memories.

Researchers at Karolinska Institutet have now traced the brain's lower plasticity to reduced functionality in its support cells, and believe that learning more about these cells can pave the way for radical new therapies for depression.

"We were able to cure memory dysfunction in 'depressed' rats by giving them doses of D-serine," says Mia Lindskog, biologist and Assistant Professor at Karolinska Institutet's Department of Neuroscience.

Dr Lindskog and her team used FSL rats, which are rats that have been specially bred with a disposition for 'depression'. The rats were first put through two tests to confirm that they had the symptoms that are also characteristic of human depression. In the first, the rats' memories were checked by repeatedly being exposed to different objects; in the second, the team assessed their level of apathy by releasing them in a container of water and observing whether they merely stayed floating in the container or immediately tried to climb out (non of the rats had to stay in the water for more than five minutes). In both cases the FSL rats' results were compared with normal laboratory rats, and memory disorders and apathy could be confirmed.

The researchers then injected the rats with D-serine. This substance improved their memories but had no effect on the apathy.

"We have shown that there are two symptoms here that can be influenced independently of one another, which means they could be treated in tandem in patients with depression," says Dr Lindskog.

The researchers also studied the synaptic activity in the hippocampus of the rats, a part of the brain which plays an important part in the memory. They found that there was a much higher degree of synaptic activity in the brains of the depressed rats than in the controls. However, when the researchers tried to increase the level of signal transmission, they found the brains of the depressed rats to be unresponsive, which indicated that they had a lower plasticity that rendered them unable to increase neuronal activity when needed - unlike the brains of the healthy rats. When the brain samples were soaked in D-serine, the plasticity of the depressed rats' brains improved.

D-serine is a substance secreted by astrocytes, which are support cells for brain neurons.

"We don't actually know very much about these glial cells, but it's very likely that they perform a very important function in the brain," says Dr Lindskog.

It is hoped that their discoveries will eventually lead to new therapies for depression.

"D-serine doesn't pass the blood-brain barrier particularly well, so it's not really a suitable candidate on which to base a drug, but the mechanism that we've identified, whereby it's possible to increase plasticity and improve the memory, is a feasible route that we might be able to reach in a way that doesn't involve D-serine," says Dr Lindskog.

Publication:

Marta Gómez-Galán, Dimitri De Bundel, Ann Van Eeckhaut, Ilse Smolders & Maria Lindskog

Dysfunctional Astrocytic Regulation of Glutamate Transmission in a Rat Model of Depression

Molecular Psychiatry, online 28 February 2012

For further information, please contact:
Assistant Professor Mia Lindskog
Work: +46 (0)8 524 87081 Mobile: +46 (0)703 173272
E-mail: Mia.Lindskog@ki.se

Katarina Sternudd | EurekAlert!
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>