Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries on depression

29.02.2012
During depression, the brain becomes less plastic and adaptable, and thus less able to perform certain tasks, like storing memories.

Researchers at Karolinska Institutet have now traced the brain's lower plasticity to reduced functionality in its support cells, and believe that learning more about these cells can pave the way for radical new therapies for depression.

"We were able to cure memory dysfunction in 'depressed' rats by giving them doses of D-serine," says Mia Lindskog, biologist and Assistant Professor at Karolinska Institutet's Department of Neuroscience.

Dr Lindskog and her team used FSL rats, which are rats that have been specially bred with a disposition for 'depression'. The rats were first put through two tests to confirm that they had the symptoms that are also characteristic of human depression. In the first, the rats' memories were checked by repeatedly being exposed to different objects; in the second, the team assessed their level of apathy by releasing them in a container of water and observing whether they merely stayed floating in the container or immediately tried to climb out (non of the rats had to stay in the water for more than five minutes). In both cases the FSL rats' results were compared with normal laboratory rats, and memory disorders and apathy could be confirmed.

The researchers then injected the rats with D-serine. This substance improved their memories but had no effect on the apathy.

"We have shown that there are two symptoms here that can be influenced independently of one another, which means they could be treated in tandem in patients with depression," says Dr Lindskog.

The researchers also studied the synaptic activity in the hippocampus of the rats, a part of the brain which plays an important part in the memory. They found that there was a much higher degree of synaptic activity in the brains of the depressed rats than in the controls. However, when the researchers tried to increase the level of signal transmission, they found the brains of the depressed rats to be unresponsive, which indicated that they had a lower plasticity that rendered them unable to increase neuronal activity when needed - unlike the brains of the healthy rats. When the brain samples were soaked in D-serine, the plasticity of the depressed rats' brains improved.

D-serine is a substance secreted by astrocytes, which are support cells for brain neurons.

"We don't actually know very much about these glial cells, but it's very likely that they perform a very important function in the brain," says Dr Lindskog.

It is hoped that their discoveries will eventually lead to new therapies for depression.

"D-serine doesn't pass the blood-brain barrier particularly well, so it's not really a suitable candidate on which to base a drug, but the mechanism that we've identified, whereby it's possible to increase plasticity and improve the memory, is a feasible route that we might be able to reach in a way that doesn't involve D-serine," says Dr Lindskog.

Publication:

Marta Gómez-Galán, Dimitri De Bundel, Ann Van Eeckhaut, Ilse Smolders & Maria Lindskog

Dysfunctional Astrocytic Regulation of Glutamate Transmission in a Rat Model of Depression

Molecular Psychiatry, online 28 February 2012

For further information, please contact:
Assistant Professor Mia Lindskog
Work: +46 (0)8 524 87081 Mobile: +46 (0)703 173272
E-mail: Mia.Lindskog@ki.se

Katarina Sternudd | EurekAlert!
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>