Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes drug improves glucose control without increasing risk of hypoglycemia

28.02.2012
University of Michigan leads study showing TAK-875 helps control blood sugar in type 2 diabetes by boosting insulin
TAK-875, a new treatment for type 2 diabetes, improves blood sugar control and is equally effective as glimepiride, but has a significantly lower risk of creating a dangerous drop in blood sugar, called hypoglycemia, according to a new study.

The results of the phase 2 randomized trial were published Online First Sunday in The Lancet.

Type 2 diabetes is the most common form of diabetes accounting for 90 percent of the 150 million people in the United States currently living with the disease. It is primarily caused by a lack of response to insulin which leads to high blood sugar and a variety of chronic conditions.

Free fatty acid receptor 1, also known as G protein-coupled receptor 40, or GPR40, plays a vital role in stimulating and regulating the production of insulin.

It works by boosting the release of insulin from pancreatic â-cells when glucose and fatty acids rise in the blood, such as after a meal, which results in a fall in blood glucose levels. Drugs that activate the FFAR1 receptor have the potential to help diabetics release more insulin and improve control of blood glucose levels.

TAK-875 is a novel oral medication designed to enhance insulin secretion in a glucose-dependant manner, which means that it has no effect on insulin secretion when glucose levels are normal, and as such has the potential to improve the control of blood sugar levels without the risk of hypoglycemia.

In the study, Charles Burant, M.D., Ph.D., professor of internal medicine at the University of Michigan Health System, and colleagues randomly assigned 426 patients with type 2 diabetes who were not achieving adequate glucose control through diet, exercise or metformin treatment to one of five doses of TAK-875, a placebo, or glimepiride, a conventional diabetes treatment. The primary outcome was change in hemogloblin A1c from the start of the study.

At 12 weeks, all doses of TAK-875 resulted in significant drops in HbA1c compared with placebo. A similar reduction occurred in patients given glimepiride.

At a TAK-875 dose of 25 mg or higher, about twice as many patients (33 to 48 percent) reached the American Diabetics Association target of HbA1c less than 7 percent within 12 weeks, compared with placebo (19 percent) and was similar to glimepiride (40 percent).

TAK-875 was generally well-tolerated. The incidence of hypoglycaemia was significantly lower for all doses of TAK-875 compared with glimepiride (2 percent compared to 19 percent), and was similar to placebo which was 2 percent.

The overall incidence of treatment-related side effects was similar for the TAK-875 groups and placebo groups (49 percent; all TAK-875 groups vs 48 percent), but higher in the glimepiride group (61 percent) because of the increased risk of hypoglycaemia.

The authors say: “In view of the frequent hypoglycemia after treatment with sulfonylureas,the low-risk of hypoglycaemia after treatment with TAK-875 suggests that there may be therapeutic advantage of targeting FFAR1 in treating people with type 2 diabetes.”

They conclude:“We are truly excited about the potential of TAK-875 and are eager to conduct larger trials to find out how well this drug works, how safe it is and what its place is in the treatment of diabetes.

“TAK-875 significantly improved glycemic control in patients with type 2 diabetes with minimum risk of hypoglycemia. The results show that activation of FFAR1 is a viable therapeutic target for treatment of type 2 diabetes,” authors say.
Disclosure: Burant is an unpaid consultant and advisor to Takeda Global Research and Development which discovered TAK-875.

Reference: To see the abstract online go to http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)61879-5/abstract

Press release courtesy The Lancet

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>