Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of prosthetic hands stagnated for twenty years

13.06.2012
The development of body-powered prosthetic hands has stagnated for over twenty years. That is the main conclusion of a study by researchers from TU Delft and the University of Groningen into this type of prosthesis, which is published in the American Journal of Rehabilitation Research and Development.

High operating force


The Sierra prosthetic hand from 1945 performed better than the newer hands. The inner hand shown in the photo are covered by a cosmetic glove.

The study, which was carried out by researchers from TU Delft and the University of Groningen, measured the force required to operate a number of contemporary body-powered prosthetic hands. The researchers compared the results to earlier measurements from 1987 and came up with remarkable results: today’s prosthetic hands perform equally or less well than those from 1987. The grip strength of the hands is insufficient and a very high operating force is required. Another remarkable result: a prosthetic hand developed in 1945 performed better in the test than the newer prosthetic hands.

User overload

TU Delft researcher Gerwin Smit: “The study offers a possible explanation why over half of all people with a body-powered prosthetic hand do not use it or even wear it. Besides this, some prosthetic arm users tend to suffer overload problems over time. These problems may well be a result of the excessive operating force required.” This is currently being researched further in Groningen and Delft.

Electrical alternative?

Worldwide over 30% of prosthesis users wear a body-powered prosthesis. A body-powered prosthesis is operated by pulling a cable (a little like the brake cable on your bike). This cable is attached to a harness worn on the opposite shoulder. Subtle movements between the arm wearing the prosthesis and the opposite shoulder pull the cable taut and open the prosthesis. Another popular prosthesis is the electric prosthesis. This is worn by about 40% of prosthesis users worldwide. Then there are also cosmetic prostheses.

The big question that the researchers raised as a result of this study was why there is hardly any investment in body-powered prostheses. Gerwin Smit: “With current technology it must be possible to easily improve prostheses, resulting in enormous progress for those who have to use them. In recent decades, millions have been invested in electric prostheses. The difference in price between the types of prosthesis may have influenced this, as the retail price of an electric prosthesis is around 10 to 100 time higher than a body-powered prosthesis. This makes it more attractive from a commercial point of view to invest in electric prostheses. Yet despite the investments, electric prostheses are slower and heavier than body-powered prostheses.”

New developments

In order to solve the problems of prosthesis users, TU Delft is working on making improvements to body-powered prosthetic hands. The ultimate aim is to develop a lightweight prosthetic hand with a lower operating force and a higher grip strength.

More information

Gerwin Smit:
Delft Institute of Prosthetics and Orthotics
TU Delft
www.dipo.3me.tudelft.nl
+31 (0)15-2781688
Ilona van den Brink
TU Delft Science Information Officer
+31 (0)15-2784259

Ilona van den Brink | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>