Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of prosthetic hands stagnated for twenty years

13.06.2012
The development of body-powered prosthetic hands has stagnated for over twenty years. That is the main conclusion of a study by researchers from TU Delft and the University of Groningen into this type of prosthesis, which is published in the American Journal of Rehabilitation Research and Development.

High operating force


The Sierra prosthetic hand from 1945 performed better than the newer hands. The inner hand shown in the photo are covered by a cosmetic glove.

The study, which was carried out by researchers from TU Delft and the University of Groningen, measured the force required to operate a number of contemporary body-powered prosthetic hands. The researchers compared the results to earlier measurements from 1987 and came up with remarkable results: today’s prosthetic hands perform equally or less well than those from 1987. The grip strength of the hands is insufficient and a very high operating force is required. Another remarkable result: a prosthetic hand developed in 1945 performed better in the test than the newer prosthetic hands.

User overload

TU Delft researcher Gerwin Smit: “The study offers a possible explanation why over half of all people with a body-powered prosthetic hand do not use it or even wear it. Besides this, some prosthetic arm users tend to suffer overload problems over time. These problems may well be a result of the excessive operating force required.” This is currently being researched further in Groningen and Delft.

Electrical alternative?

Worldwide over 30% of prosthesis users wear a body-powered prosthesis. A body-powered prosthesis is operated by pulling a cable (a little like the brake cable on your bike). This cable is attached to a harness worn on the opposite shoulder. Subtle movements between the arm wearing the prosthesis and the opposite shoulder pull the cable taut and open the prosthesis. Another popular prosthesis is the electric prosthesis. This is worn by about 40% of prosthesis users worldwide. Then there are also cosmetic prostheses.

The big question that the researchers raised as a result of this study was why there is hardly any investment in body-powered prostheses. Gerwin Smit: “With current technology it must be possible to easily improve prostheses, resulting in enormous progress for those who have to use them. In recent decades, millions have been invested in electric prostheses. The difference in price between the types of prosthesis may have influenced this, as the retail price of an electric prosthesis is around 10 to 100 time higher than a body-powered prosthesis. This makes it more attractive from a commercial point of view to invest in electric prostheses. Yet despite the investments, electric prostheses are slower and heavier than body-powered prostheses.”

New developments

In order to solve the problems of prosthesis users, TU Delft is working on making improvements to body-powered prosthetic hands. The ultimate aim is to develop a lightweight prosthetic hand with a lower operating force and a higher grip strength.

More information

Gerwin Smit:
Delft Institute of Prosthetics and Orthotics
TU Delft
www.dipo.3me.tudelft.nl
+31 (0)15-2781688
Ilona van den Brink
TU Delft Science Information Officer
+31 (0)15-2784259

Ilona van den Brink | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>