Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of prosthetic hands stagnated for twenty years

13.06.2012
The development of body-powered prosthetic hands has stagnated for over twenty years. That is the main conclusion of a study by researchers from TU Delft and the University of Groningen into this type of prosthesis, which is published in the American Journal of Rehabilitation Research and Development.

High operating force


The Sierra prosthetic hand from 1945 performed better than the newer hands. The inner hand shown in the photo are covered by a cosmetic glove.

The study, which was carried out by researchers from TU Delft and the University of Groningen, measured the force required to operate a number of contemporary body-powered prosthetic hands. The researchers compared the results to earlier measurements from 1987 and came up with remarkable results: today’s prosthetic hands perform equally or less well than those from 1987. The grip strength of the hands is insufficient and a very high operating force is required. Another remarkable result: a prosthetic hand developed in 1945 performed better in the test than the newer prosthetic hands.

User overload

TU Delft researcher Gerwin Smit: “The study offers a possible explanation why over half of all people with a body-powered prosthetic hand do not use it or even wear it. Besides this, some prosthetic arm users tend to suffer overload problems over time. These problems may well be a result of the excessive operating force required.” This is currently being researched further in Groningen and Delft.

Electrical alternative?

Worldwide over 30% of prosthesis users wear a body-powered prosthesis. A body-powered prosthesis is operated by pulling a cable (a little like the brake cable on your bike). This cable is attached to a harness worn on the opposite shoulder. Subtle movements between the arm wearing the prosthesis and the opposite shoulder pull the cable taut and open the prosthesis. Another popular prosthesis is the electric prosthesis. This is worn by about 40% of prosthesis users worldwide. Then there are also cosmetic prostheses.

The big question that the researchers raised as a result of this study was why there is hardly any investment in body-powered prostheses. Gerwin Smit: “With current technology it must be possible to easily improve prostheses, resulting in enormous progress for those who have to use them. In recent decades, millions have been invested in electric prostheses. The difference in price between the types of prosthesis may have influenced this, as the retail price of an electric prosthesis is around 10 to 100 time higher than a body-powered prosthesis. This makes it more attractive from a commercial point of view to invest in electric prostheses. Yet despite the investments, electric prostheses are slower and heavier than body-powered prostheses.”

New developments

In order to solve the problems of prosthesis users, TU Delft is working on making improvements to body-powered prosthetic hands. The ultimate aim is to develop a lightweight prosthetic hand with a lower operating force and a higher grip strength.

More information

Gerwin Smit:
Delft Institute of Prosthetics and Orthotics
TU Delft
www.dipo.3me.tudelft.nl
+31 (0)15-2781688
Ilona van den Brink
TU Delft Science Information Officer
+31 (0)15-2784259

Ilona van den Brink | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>