Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting levels of antibiotics in blood paves the way to individualized treatment

03.03.2014

Dominique Fourniol

The study, published today in Nature Nanotechnology, describes the exploitation of a sensor for measuring the concentration of effective antibiotics in blood, giving an indication of their efficiency against disease causing pathogens, for instance multidrug resistant hospital "superbugs".

This development could potentially give a far greater understanding of the effectiveness of drug dosages required for different individuals, reducing potential toxic effects, allowing personalised treatment for patients and leading to new insights into optimal clinical regimes, such as combination therapies.

When effective, antibiotic molecules impose cellular stress on a pathogen's cell wall target, such as a bacterium, which contributes to its breakdown. However, competing molecules in solution, for example serum proteins, can affect the binding of the antibiotic to the bacterium, reducing the efficacy of the drug. Serum proteins bind to drugs in blood and, in doing so, reduce the amount of a drug present and its penetration into cell tissues.

As the amount of antibiotics that bind to serum proteins will vary between individuals, it is extremely valuable to be able to determine the precise amount of the drug that is bound to serum proteins, and how much is free in the blood, in order to be able to accurately calculate the optimum dosage.

Existing biosensors on the market do not measure cellular stress, however, the nanomechanical sensor exploited by a group of researchers from the London Centre for Nanotechnology (LCN) at UCL, the University of Cambridge, the University of Queensland and Jomo Kenyatta University of Agriculture and Technology, can accurately measure this important information even when antibiotic drug molecules are only present at very low concentrations.

The researchers coated the surface of a nanomechanical cantilever array with a model bacterial membrane and used this as a surface stress sensor. The sensor is extremely sensitive to tiny bending signals caused by its interactions with the antibiotics, in this case, the FDA-approved vancomycin and the yet to be approved oritavancin, which appears to deal with certain vancomycin-resistant bacteria, in the blood serum.

This investigation has yielded the first experimental evidence that drug-serum complexes (the antibiotics bound to the competing serum proteins) do not induce stress on the bacteria and so could provide realistic in-vitro susceptibility tests for drugs and to define effective doses which are effective enough but less toxic to patients.

In the future, the researchers believe that with a suitably engineered surface probe, this sensor could be paired with customised drug delivery for anaesthetics, anti-cancer, anti-HIV and antibacterial therapies.

The lead author of the study, Dr. Joseph W. Ndieyira of the LCN, said "This discovery represents a major advance in our fundamental understanding of the pathways between chemical and mechanical signals in a complex media, such as blood serum, and how this information can be used to tune the efficacy of drugs and to minimise the potential toxic side effects."

Dr. Ndieyira added, "Monitoring the levels of active free drugs in serum can be crucial in honing therapeutic solutions for patients to enhance drug administration. This will be particularly helpful in addressing problems of drugs which have to be used in very precise quantities and where there are large differences in how drugs affect individuals and groups. For example, overuse of antibiotics can fuel resistance to drugs or underuse of anaesthetics may lead to a patient regaining consciousness during an operation."

###

Notes to editors

1. For more information or to speak to one of the researchers, please contact Dominique Fourniol in the UCL Media Relations Office on tel: +44 (0)20 3108 3843, out of hours +44 (0)7917 271 364, e-mail: d.fourniol@ucl.ac.uk

2. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum is published online in Nature Nanotechnology on 2 March 2014.

3. Journalists can obtain copies of the paper by contacting the UCL Media Relations Office.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

Dominique Fourniol | EurekAlert!

Further reports about: Nanotechnology UCL antibiotic bacteria bacterium blood drugs proteins toxic

More articles from Health and Medicine:

nachricht Mobile phone test can reveal vision problems in time
11.02.2016 | University of Gothenburg

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>