Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting levels of antibiotics in blood paves the way to individualized treatment

03.03.2014

Dominique Fourniol

The study, published today in Nature Nanotechnology, describes the exploitation of a sensor for measuring the concentration of effective antibiotics in blood, giving an indication of their efficiency against disease causing pathogens, for instance multidrug resistant hospital "superbugs".

This development could potentially give a far greater understanding of the effectiveness of drug dosages required for different individuals, reducing potential toxic effects, allowing personalised treatment for patients and leading to new insights into optimal clinical regimes, such as combination therapies.

When effective, antibiotic molecules impose cellular stress on a pathogen's cell wall target, such as a bacterium, which contributes to its breakdown. However, competing molecules in solution, for example serum proteins, can affect the binding of the antibiotic to the bacterium, reducing the efficacy of the drug. Serum proteins bind to drugs in blood and, in doing so, reduce the amount of a drug present and its penetration into cell tissues.

As the amount of antibiotics that bind to serum proteins will vary between individuals, it is extremely valuable to be able to determine the precise amount of the drug that is bound to serum proteins, and how much is free in the blood, in order to be able to accurately calculate the optimum dosage.

Existing biosensors on the market do not measure cellular stress, however, the nanomechanical sensor exploited by a group of researchers from the London Centre for Nanotechnology (LCN) at UCL, the University of Cambridge, the University of Queensland and Jomo Kenyatta University of Agriculture and Technology, can accurately measure this important information even when antibiotic drug molecules are only present at very low concentrations.

The researchers coated the surface of a nanomechanical cantilever array with a model bacterial membrane and used this as a surface stress sensor. The sensor is extremely sensitive to tiny bending signals caused by its interactions with the antibiotics, in this case, the FDA-approved vancomycin and the yet to be approved oritavancin, which appears to deal with certain vancomycin-resistant bacteria, in the blood serum.

This investigation has yielded the first experimental evidence that drug-serum complexes (the antibiotics bound to the competing serum proteins) do not induce stress on the bacteria and so could provide realistic in-vitro susceptibility tests for drugs and to define effective doses which are effective enough but less toxic to patients.

In the future, the researchers believe that with a suitably engineered surface probe, this sensor could be paired with customised drug delivery for anaesthetics, anti-cancer, anti-HIV and antibacterial therapies.

The lead author of the study, Dr. Joseph W. Ndieyira of the LCN, said "This discovery represents a major advance in our fundamental understanding of the pathways between chemical and mechanical signals in a complex media, such as blood serum, and how this information can be used to tune the efficacy of drugs and to minimise the potential toxic side effects."

Dr. Ndieyira added, "Monitoring the levels of active free drugs in serum can be crucial in honing therapeutic solutions for patients to enhance drug administration. This will be particularly helpful in addressing problems of drugs which have to be used in very precise quantities and where there are large differences in how drugs affect individuals and groups. For example, overuse of antibiotics can fuel resistance to drugs or underuse of anaesthetics may lead to a patient regaining consciousness during an operation."

###

Notes to editors

1. For more information or to speak to one of the researchers, please contact Dominique Fourniol in the UCL Media Relations Office on tel: +44 (0)20 3108 3843, out of hours +44 (0)7917 271 364, e-mail: d.fourniol@ucl.ac.uk

2. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum is published online in Nature Nanotechnology on 2 March 2014.

3. Journalists can obtain copies of the paper by contacting the UCL Media Relations Office.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

Dominique Fourniol | EurekAlert!

Further reports about: Nanotechnology UCL antibiotic bacteria bacterium blood drugs proteins toxic

More articles from Health and Medicine:

nachricht Newly discovered 'multicomponent' virus can infect animals
26.08.2016 | US Army Medical Research Institute of Infectious Diseases

nachricht Symmetry crucial for building key biomaterial collagen in the lab
26.08.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>