Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing drugs and their antidotes together improves patient care

06.10.2009
Imagine a surgical patient on a blood-thinning drug who starts bleeding more than expected, and an antidote that works immediately – because the blood thinner and antidote were designed to work together. Researchers at Duke University Medical Center have engineered a way to do this for an entire, versatile class of drugs called aptamers and published their findings in Nature Medicine.

"With any anticoagulant, you are trying to reduce your chances of having clotting because it can lead to a heart attack or stroke during treatment," said Bruce Sullenger, Ph.D., senior author and Vice Chair for Research and Joseph W. and Dorothy W. Beard Professor of Surgery. Yet bleeding is a common side effect during and after treatments that require anticoagulation therapy such as surgery or angioplasty.

These new antidotes may give doctors a way to quickly and precisely put the brakes on an anticoagulant if bleeding becomes a problem or neutralize other adverse events or toxicities.

Duke researchers have just completed a series of successful clinical trials in patients taking a blood-thinner aptamer and an antidote engineered to reverse the effects of the aptamer.

"We have shown that this type of antidote can reverse the action of any of the aptamer drugs, and there are many aptamers in development," Sullenger said. Their approach amounts to a universal antidote to the entire aptamer family. "We predict that this advance will significantly expand the number of diseases that can be more safely treated using antidote-controllable therapeutic agents," he said.

The new approach, called RNA-based aptamer technology, "provides the opportunity to make safer drugs," said Sullenger, who also directs the Duke Translational Research Institute. "And now that we can engineer a universal antidote for aptamers, we can in principle for the first time afford to provide additional control over drugs for patients and their physicians."

Aptamers are oligonucelotides, short stretches of nucleic acid that bind to a specific target molecule. If a patient takes an aptamer drug, the drug is the only free oligonucleotide in the body.

The researchers studied eight aptamer drugs and showed that the antidotes they introduced could reverse the activity of any of the drugs, regardless of the sequence, shape or target of the drug.

One advantage of aptamer drugs, as opposed to antibody-based drugs, is that nucleic acids aren't typically recognized by the human immune system as foreign agents. Aptamers do not generally trigger an immune response, Sullenger said.

"This technology could be applied to any oligonucleotide-based therapeutic that is free in a patient's circulation," said lead author Sabah Oney, Ph.D., formerly with the Sullenger laboratory and now a senior scientist at b3bio, a biotechnology company Sullenger helped co-found in the Research Triangle Park.

"With the ever-increasing number of such drugs in clinical trials, we believe that this discovery can have very broad applications and improve the safety profile of these therapeutics," Oney said. "This could be rapidly translated into the clinic, and lead to a whole new class of safer therapeutic agents."

To date, one aptamer has been approved by the U.S. Food and Drug Administration, a drug for macular degeneration, a cause of blindness. Several others are being tested and developed for use in cardiovascular, hematology and cancer patients.

"This research potentially represents the next frontier of controlled therapeutics using nucleic acids as highly selective antithrombotics and neutralizing polymers," said Richard C. Becker, M.D., Professor of Medicine in the Duke Divisions of Cardiology and Hematology and a scientist in the Duke Clinical Research Institute (DCRI) who has worked on clinical trials with the aptamer antidotes. "The translational platform for antithrombotic therapy pioneered by the Sullenger laboratory in collaboration with the DCRI underscores the unlimited potential of clinicians and scientists collaborating with purpose and commitment to advance patient care."

"Future optimization should further improve the potency of sequestering the aptamers from circulation, which will then spur the development of many new aptamer drugs," said Kam Leong, a James B. Duke professor of biomedical engineering and co-author of the study.

Other authors on the paper include Ruby T. S. Lam of the Duke Department of Biomedical Engineering, Kristin M. Bompiani and Charlene M. Blake of the Duke University Program in Genetics and Genomics and the Duke Department of Surgery, George Quick of the Duke Translational Research Institute, Jeremy Heidel and Joanna Yi-Ching Liu of Calando Pharmaceuticals, and Brendan C. Mack and Mark E. Davis of the Department of Chemical Engineering at the California Institute of Technology.

This work was supported by a grant from the National Institutes of Health, a predoctoral fellowship from the American Heart Association, and a grant from the National Cancer Institute.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>