Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing drugs and their antidotes together improves patient care

06.10.2009
Imagine a surgical patient on a blood-thinning drug who starts bleeding more than expected, and an antidote that works immediately – because the blood thinner and antidote were designed to work together. Researchers at Duke University Medical Center have engineered a way to do this for an entire, versatile class of drugs called aptamers and published their findings in Nature Medicine.

"With any anticoagulant, you are trying to reduce your chances of having clotting because it can lead to a heart attack or stroke during treatment," said Bruce Sullenger, Ph.D., senior author and Vice Chair for Research and Joseph W. and Dorothy W. Beard Professor of Surgery. Yet bleeding is a common side effect during and after treatments that require anticoagulation therapy such as surgery or angioplasty.

These new antidotes may give doctors a way to quickly and precisely put the brakes on an anticoagulant if bleeding becomes a problem or neutralize other adverse events or toxicities.

Duke researchers have just completed a series of successful clinical trials in patients taking a blood-thinner aptamer and an antidote engineered to reverse the effects of the aptamer.

"We have shown that this type of antidote can reverse the action of any of the aptamer drugs, and there are many aptamers in development," Sullenger said. Their approach amounts to a universal antidote to the entire aptamer family. "We predict that this advance will significantly expand the number of diseases that can be more safely treated using antidote-controllable therapeutic agents," he said.

The new approach, called RNA-based aptamer technology, "provides the opportunity to make safer drugs," said Sullenger, who also directs the Duke Translational Research Institute. "And now that we can engineer a universal antidote for aptamers, we can in principle for the first time afford to provide additional control over drugs for patients and their physicians."

Aptamers are oligonucelotides, short stretches of nucleic acid that bind to a specific target molecule. If a patient takes an aptamer drug, the drug is the only free oligonucleotide in the body.

The researchers studied eight aptamer drugs and showed that the antidotes they introduced could reverse the activity of any of the drugs, regardless of the sequence, shape or target of the drug.

One advantage of aptamer drugs, as opposed to antibody-based drugs, is that nucleic acids aren't typically recognized by the human immune system as foreign agents. Aptamers do not generally trigger an immune response, Sullenger said.

"This technology could be applied to any oligonucleotide-based therapeutic that is free in a patient's circulation," said lead author Sabah Oney, Ph.D., formerly with the Sullenger laboratory and now a senior scientist at b3bio, a biotechnology company Sullenger helped co-found in the Research Triangle Park.

"With the ever-increasing number of such drugs in clinical trials, we believe that this discovery can have very broad applications and improve the safety profile of these therapeutics," Oney said. "This could be rapidly translated into the clinic, and lead to a whole new class of safer therapeutic agents."

To date, one aptamer has been approved by the U.S. Food and Drug Administration, a drug for macular degeneration, a cause of blindness. Several others are being tested and developed for use in cardiovascular, hematology and cancer patients.

"This research potentially represents the next frontier of controlled therapeutics using nucleic acids as highly selective antithrombotics and neutralizing polymers," said Richard C. Becker, M.D., Professor of Medicine in the Duke Divisions of Cardiology and Hematology and a scientist in the Duke Clinical Research Institute (DCRI) who has worked on clinical trials with the aptamer antidotes. "The translational platform for antithrombotic therapy pioneered by the Sullenger laboratory in collaboration with the DCRI underscores the unlimited potential of clinicians and scientists collaborating with purpose and commitment to advance patient care."

"Future optimization should further improve the potency of sequestering the aptamers from circulation, which will then spur the development of many new aptamer drugs," said Kam Leong, a James B. Duke professor of biomedical engineering and co-author of the study.

Other authors on the paper include Ruby T. S. Lam of the Duke Department of Biomedical Engineering, Kristin M. Bompiani and Charlene M. Blake of the Duke University Program in Genetics and Genomics and the Duke Department of Surgery, George Quick of the Duke Translational Research Institute, Jeremy Heidel and Joanna Yi-Ching Liu of Calando Pharmaceuticals, and Brendan C. Mack and Mark E. Davis of the Department of Chemical Engineering at the California Institute of Technology.

This work was supported by a grant from the National Institutes of Health, a predoctoral fellowship from the American Heart Association, and a grant from the National Cancer Institute.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>