Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deconstructing mental illness through ultradian rhythms

23.02.2015

Might living a structured life with regularly established meal times and early bedtimes lead to a better life and perhaps even prevent the onset of mental illness? That's what's suggested in a study led by Kai-Florian Storch, PhD, of the Douglas Mental Health University Institute and McGill University, which has been published in the online journal eLife.

Our daily sleep-wake cycle is governed by an internal 24-hour timer, the circadian clock. However, there is evidence that daily activity is also influenced by rhythms much shorter than 24 hours, which are known as ultradian rhythms and follow a four-hour cycle. Most prominently observed in infants before they are able to sleep through the night, ultradian rhythms may explain why, on average, we eat three meals a day that are relatively evenly spaced across our daily wake period.


This is Kai-Floriant Storch, Douglas Institute, Montreal.

Credit: Douglas Institute

These four-hour ultradian rhythms are activated by dopamine, a key chemical substance in the brain. When dopamine levels are out of kilter - as is suggested to be the case with people suffering from bipolar disease and schizophrenia - the four-hour rhythms can stretch as long as 48 hours.

A novel hypothesis

With this study, conducted on genetically modified mice, Dr. Storch and his team demonstrate that sleep abnormalities, which in the past have been associated with circadian rhythm disruption, result instead from an imbalance of an ultradian rhythm generator (oscillator) that is based on dopamine. The team's findings also offer a very specific explanation for the two-day cycling between mania and depression observed in certain bipolar cases: it is a result of the dopamine oscillator running on a 48-hour cycle.

Groundbreaking

This work is groundbreaking not only because of its discovery of a novel dopamine-based rhythm generator, but also because of its links to psychopathology. This new data suggests that when the ultradian arousal oscillator goes awry, sleep becomes disturbed and mania will be induced in bipolar patients; oscillator imbalance may likely also be associated with schizophrenic episodes in schizophrenic subjects. The findings have potentially strong implications for the treatment of bipolar disease and other mental illnesses linked to dopamine dysregulation.

The work, entitled "A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal," has been funded by the Canadian Institutes of Health Research, the Natural Sciences Engineering and Research Council, and the Canadian Foundation for Innovation. To read the full paper: http://elifesciences.org/content/3/e05105

Contacts:

Anne Quirion
Media Relations
Communications and Public Affairs
Douglas Mental Health University Institute
Tel.: 514-761-6131, ext. 2717
anne-quirion@douglas.mcgill.ca

Cynthia Lee
Media Relations Office
McGill University
Tel.: 514-398-6754
cynthia.lee@mcgill.ca

About the Douglas Institute - http://www.douglas.qc.ca

The Douglas is a world-class institute affiliated with McGill University and the World Health Organization. It treats people suffering from mental illness and offers them both hope and healing. Its teams of specialists and researchers are constantly increasing scientific knowledge, integrating this knowledge into patient care, and sharing it with the community in order to educate the public and eliminate prejudices surrounding mental health.

Florence Meney | EurekAlert!

Further reports about: Health bipolar bipolar disease dopamine illness mental illness oscillator rhythm rhythm generator rhythms

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>