Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracks in the cellular transport system can be key to a new generation of cancer therapies

27.01.2014
Researchers from Warwick Medical School have discovered a critical point of failure in the microscopic transport system that operates inside every cell in the human body.

The study, published today in Nature Communications, explains how this tiny 'railway' system is a key target for cancer drugs and, as such, how this new discovery reveals how better drugs might be made. The tracks of this so called 'railway' are tiny tubes, called microtubules, 1000 times thinner than a human hair.


Researchers at Warwick Medical School have found that the minuscule tracks of a cellular railway system have a line of weakness, which tends to crack and cause the tracks to dissolve. Cancer drugs already target these microscopic railway tracks, which are called microtubules and are a thousand times thinner than a human hair.

Credit: Prof. Robert Cross, Warwick Medical School

The research shows that a narrow seam that runs along the length of the microtubules is the weakest point. If the seam cracks and splits, the microtubule dissolves.

It has been known for some time that microtubules have a single seam that zips the structure together along its length, but the function of this seam has evaded scientists until now. By building microtubules with extra seams in the laboratory, and examining their stability using video microscopes, the researchers found that the more seams the microtubule has, the more unstable it becomes.

The new work dramatically alters thinking on how the microtubule system works and the search is now on for factors inside the cell that influence the stability of microtubule seams.

Microtubules are a validated target for cancer therapy drugs. For example Taxol™, used in breast cancer therapy, binds to microtubules and stops the microtubule from dissolving. This means the microtubule tracks cannot remodel themselves prior to cell division, which in turn stops the cells dividing, thus arresting the growth of cells including those forming cancerous tumours.

Professor Robert Cross, head of the research team at Warwick Medical School, explained, "It is clear that any new drugs aiming to stabilize or destabilize microtubules must target the microtubule seam. We expect this to lead us to a better understanding of the way microtubules are regulated in cells and why this sometimes goes wrong, such as in development of cancer."

"Our findings help us to understand how some existing cancer treatment drugs actually work and this in turn should lead to development of new generations of better and more effective anti-microtubule drugs."

The research was funded by the Association for International Cancer Research (AICR) and Marie Curie Cancer Care.

Luke Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Discovery of a novel gene for hereditary colon cancer
29.07.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>