Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cracks in the cellular transport system can be key to a new generation of cancer therapies

Researchers from Warwick Medical School have discovered a critical point of failure in the microscopic transport system that operates inside every cell in the human body.

The study, published today in Nature Communications, explains how this tiny 'railway' system is a key target for cancer drugs and, as such, how this new discovery reveals how better drugs might be made. The tracks of this so called 'railway' are tiny tubes, called microtubules, 1000 times thinner than a human hair.

Researchers at Warwick Medical School have found that the minuscule tracks of a cellular railway system have a line of weakness, which tends to crack and cause the tracks to dissolve. Cancer drugs already target these microscopic railway tracks, which are called microtubules and are a thousand times thinner than a human hair.

Credit: Prof. Robert Cross, Warwick Medical School

The research shows that a narrow seam that runs along the length of the microtubules is the weakest point. If the seam cracks and splits, the microtubule dissolves.

It has been known for some time that microtubules have a single seam that zips the structure together along its length, but the function of this seam has evaded scientists until now. By building microtubules with extra seams in the laboratory, and examining their stability using video microscopes, the researchers found that the more seams the microtubule has, the more unstable it becomes.

The new work dramatically alters thinking on how the microtubule system works and the search is now on for factors inside the cell that influence the stability of microtubule seams.

Microtubules are a validated target for cancer therapy drugs. For example Taxol™, used in breast cancer therapy, binds to microtubules and stops the microtubule from dissolving. This means the microtubule tracks cannot remodel themselves prior to cell division, which in turn stops the cells dividing, thus arresting the growth of cells including those forming cancerous tumours.

Professor Robert Cross, head of the research team at Warwick Medical School, explained, "It is clear that any new drugs aiming to stabilize or destabilize microtubules must target the microtubule seam. We expect this to lead us to a better understanding of the way microtubules are regulated in cells and why this sometimes goes wrong, such as in development of cancer."

"Our findings help us to understand how some existing cancer treatment drugs actually work and this in turn should lead to development of new generations of better and more effective anti-microtubule drugs."

The research was funded by the Association for International Cancer Research (AICR) and Marie Curie Cancer Care.

Luke Harrison | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>