Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracks in the cellular transport system can be key to a new generation of cancer therapies

27.01.2014
Researchers from Warwick Medical School have discovered a critical point of failure in the microscopic transport system that operates inside every cell in the human body.

The study, published today in Nature Communications, explains how this tiny 'railway' system is a key target for cancer drugs and, as such, how this new discovery reveals how better drugs might be made. The tracks of this so called 'railway' are tiny tubes, called microtubules, 1000 times thinner than a human hair.


Researchers at Warwick Medical School have found that the minuscule tracks of a cellular railway system have a line of weakness, which tends to crack and cause the tracks to dissolve. Cancer drugs already target these microscopic railway tracks, which are called microtubules and are a thousand times thinner than a human hair.

Credit: Prof. Robert Cross, Warwick Medical School

The research shows that a narrow seam that runs along the length of the microtubules is the weakest point. If the seam cracks and splits, the microtubule dissolves.

It has been known for some time that microtubules have a single seam that zips the structure together along its length, but the function of this seam has evaded scientists until now. By building microtubules with extra seams in the laboratory, and examining their stability using video microscopes, the researchers found that the more seams the microtubule has, the more unstable it becomes.

The new work dramatically alters thinking on how the microtubule system works and the search is now on for factors inside the cell that influence the stability of microtubule seams.

Microtubules are a validated target for cancer therapy drugs. For example Taxol™, used in breast cancer therapy, binds to microtubules and stops the microtubule from dissolving. This means the microtubule tracks cannot remodel themselves prior to cell division, which in turn stops the cells dividing, thus arresting the growth of cells including those forming cancerous tumours.

Professor Robert Cross, head of the research team at Warwick Medical School, explained, "It is clear that any new drugs aiming to stabilize or destabilize microtubules must target the microtubule seam. We expect this to lead us to a better understanding of the way microtubules are regulated in cells and why this sometimes goes wrong, such as in development of cancer."

"Our findings help us to understand how some existing cancer treatment drugs actually work and this in turn should lead to development of new generations of better and more effective anti-microtubule drugs."

The research was funded by the Association for International Cancer Research (AICR) and Marie Curie Cancer Care.

Luke Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>