Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracks in the cellular transport system can be key to a new generation of cancer therapies

27.01.2014
Researchers from Warwick Medical School have discovered a critical point of failure in the microscopic transport system that operates inside every cell in the human body.

The study, published today in Nature Communications, explains how this tiny 'railway' system is a key target for cancer drugs and, as such, how this new discovery reveals how better drugs might be made. The tracks of this so called 'railway' are tiny tubes, called microtubules, 1000 times thinner than a human hair.


Researchers at Warwick Medical School have found that the minuscule tracks of a cellular railway system have a line of weakness, which tends to crack and cause the tracks to dissolve. Cancer drugs already target these microscopic railway tracks, which are called microtubules and are a thousand times thinner than a human hair.

Credit: Prof. Robert Cross, Warwick Medical School

The research shows that a narrow seam that runs along the length of the microtubules is the weakest point. If the seam cracks and splits, the microtubule dissolves.

It has been known for some time that microtubules have a single seam that zips the structure together along its length, but the function of this seam has evaded scientists until now. By building microtubules with extra seams in the laboratory, and examining their stability using video microscopes, the researchers found that the more seams the microtubule has, the more unstable it becomes.

The new work dramatically alters thinking on how the microtubule system works and the search is now on for factors inside the cell that influence the stability of microtubule seams.

Microtubules are a validated target for cancer therapy drugs. For example Taxol™, used in breast cancer therapy, binds to microtubules and stops the microtubule from dissolving. This means the microtubule tracks cannot remodel themselves prior to cell division, which in turn stops the cells dividing, thus arresting the growth of cells including those forming cancerous tumours.

Professor Robert Cross, head of the research team at Warwick Medical School, explained, "It is clear that any new drugs aiming to stabilize or destabilize microtubules must target the microtubule seam. We expect this to lead us to a better understanding of the way microtubules are regulated in cells and why this sometimes goes wrong, such as in development of cancer."

"Our findings help us to understand how some existing cancer treatment drugs actually work and this in turn should lead to development of new generations of better and more effective anti-microtubule drugs."

The research was funded by the Association for International Cancer Research (AICR) and Marie Curie Cancer Care.

Luke Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>