Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could there be a gleevec for brain cancer?

10.02.2015

The drug Gleevec (imatinib mesylate) is well known not only for its effectiveness against chronic myeloid leukemia (CML) and acute lymphoblastic leukemia, but also for the story behinds its development. The drug was specifically designed to target an abnormal molecule--a fusion of two normal cell proteins--that fueled a tumor's growth.

A similar drug might be able to tame some brain cancers, new research from Columbia University Medical Center has shown. A team led by Antonio Iavarone, MD, professor of neurology and of pathology and cell biology, Institute for Cancer Genetics, previously discovered that a fusion of two proteins (present only in cancer cells and different from the two in CML) drives some cases of glioma, a common form of brain cancer.


This image shows fusion protein (red) in tumor cells from a histological section of human glioblastoma.

Credit: Lab of Antonio Iavarone

The team's most recent study, published in Clinical Cancer Research, looked closely at two patients affected by recurrent glioblastoma with the fused proteins, in a first in-human trial of a drug that targets half of the fusion protein. Those patients, the researchers found, responded particularly well to the drug, with clinical improvement and radiological tumor reduction. The responses lasted 115 and 134 days, respectively.

"This suggests that if we developed a drug that hits the fused protein more precisely, while leaving normal cells alone, we may get even better results," said Dr. Iavarone. "The real test of that will have to wait for the development of such a drug and the clinical trials."

The study also found the fused protein in a significant fraction of the 795 glioma cases they examined, indicating that a smart drug that targets the fused proteins could have a meaningful impact.

###

VIDEO available, please contact ket2116@columbia.edu.

The article is titled, "Detection, characterization and inhibition of FGFR-TACC fusions in IDH wild type glioma." The other contributors are: Anna Luisa Di Stefano, Marianne Labussiere, Karima Mokhtari, Yannick Marie, Aurelie Bruno, Blandine Boisselier, Marine Giry, Aurelie Kamoun, MarcSanson (Sorbonne Universités); Alessandra Fucci, Veronique Frattini, Pietro Zoppoli, Anna Lasorella (CUMC); Julien Savatovsky (Fondation Ophtalmologique A. de Rothschild); Mehdi Touat, Jean-Charles Soria (Gustave Roussy Cancer Center); Hayat Belaid, Ahmed Idbaih, Caroline Houillier (Groupe Hospitalier Pitié Salpêtrière); Feng R. Luo (Janssen Pharmaceutical); Josep Tabernero (Universitat Autònoma de Barcelona); Marica Eoli, Rosina Paterra, Gaetano Finocchiaro (Fondazione I.R.C.C.S Istituto Neurologico C. Besta);

Stephen Yip (University of British Columbia); Kevin Petrecca (McGill University); and Jennifer A. Chan (University of Calgary).

The authors declare no financial or other conflicts of interest.

The study was funded by grants from the National Cancer Institute (R01CA178546), National Institute of Neurological Disorders and Stroke (R01NS061776) and a grant from The Chemotherapy Foundation.

The Herbert Irving Comprehensive Cancer Center (HICCC) of Columbia University and NewYork-Presbyterian Hospital is dedicated to the cure of cancer through innovative basic, clinical, and population-based research and outstanding patient care. HICCC researchers and physicians are dedicated to understanding the biology of cancer and to applying that knowledge to the design of cancer therapies and prevention strategies that reduce its incidence and progression and improve the quality of the lives of those affected by cancer. Initially funded by the National Cancer Institute (NCI) in 1972 and designated comprehensive in 1979, the HICCC is one of 41 NCI-designated comprehensive cancer centers in the United States, of which only three are in New York State. The designation recognizes the Center's collaborative environment and expertise in harnessing translational research to bridge scientific discovery to clinical delivery, with the ultimate goal of successfully introducing novel diagnostic, therapeutic, and preventive approaches to cancer. For more information, visit http://www.hiccc.columbia.edu.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Media Contact

Karin Eskenazi
ket2116@columbia.edu
212-342-0508

 @ColumbiaMed

http://www.cumc.columbia.edu 

Karin Eskenazi | EurekAlert!

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>