Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consensus in the Fight Against Colorectal Cancer

31.05.2016

In colorectal cancer, the presence of invasive tumor cells at the advancing edge of the tumor can provide valuable information on prognosis. Initiated by the Colorectal Cancer Research Group at the Institute of Pathology, University of Bern, a consensus conference was held to determine how this phenomenon should best be put into practice. Together with colleagues from eleven countries, an internationally standardized scoring method was established.

With over a million new cases per year, colorectal cancer is one of the most commonly diagnosed cancers across the globe. Despite recent advances in medical research, the prognosis of patients who present with advanced tumors remains relatively poor.


Tumor buds (marked by the black arrows) are single cells or small clusters of tumor cells which detach from the main tumor body and invade surrounding tissue.

Picture: University of Berne, Institute of Pathology

The treatment of colorectal cancer requires an interdisciplinary approach. After surgery is performed to remove the cancer with part of the colon, the specimen is then examined by a physician with specialist training pathology who is responsible for confirming the diagnosis and determining tumor stage.

Additionally, in order to evaluate the biological behavior of an individual tumor the pathologist can also examine certain biomarkers, either microscopically or by additional molecular analysis. The information from such biomarkers may be of prognostic value, or predict response to a given therapy, so that treatment strategies can be tailored to individual patients.

Biomarkers for more precise prognosis

The phenomenon of ‘tumor budding’ has received increasing attention in the medical literature as an indicator of aggressiveness in colorectal cancer. Single cancer cells or small clusters of cancer cells gain the ability to detach from the main tumor body and increase the risk of colonization of other organs via lymphatic and blood vessels, ultimately leading to fatality.

However, until now, there has been no established and internationally recognized system to assess tumor budding in order for it to be used to influence clinical management decisions that directly affect patient care.

Bernese efforts to achieve consensus

At the end of April 2016, an international tumor budding consensus conference (ITBCC) initiated by the Colorectal Cancer Research Group was held in order to develop an internationally standardized method of assessing tumor buds. The method is cheap, can be performed anywhere and can replace in some circumstances expensive molecular testing.

This was a revolutionary step in improving biomarker assessment in colorectal cancer. The next step is to implement tumor budding as a prognostic indicator in national guidelines as well as colorectal cancer reporting recommendations of the World Health Organization (WHO), the UICC (Union Intérnationale Contre le Cancer) and the AJCC (American Joint Committee on Cancer).

«Reporting of tumor budding by pathologists worldwide will help serve as the basis for future clinical studies geared at the development of novel therapies targeted at tumor buds», says Alessandro Lugli, Head of the Division of Clinical Pathology at the Institute of Pathology.

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...
http://www.pathology.unibe.ch/index_eng.html

Nathalie Matter | Universität Bern

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>