Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consensus in the Fight Against Colorectal Cancer

31.05.2016

In colorectal cancer, the presence of invasive tumor cells at the advancing edge of the tumor can provide valuable information on prognosis. Initiated by the Colorectal Cancer Research Group at the Institute of Pathology, University of Bern, a consensus conference was held to determine how this phenomenon should best be put into practice. Together with colleagues from eleven countries, an internationally standardized scoring method was established.

With over a million new cases per year, colorectal cancer is one of the most commonly diagnosed cancers across the globe. Despite recent advances in medical research, the prognosis of patients who present with advanced tumors remains relatively poor.


Tumor buds (marked by the black arrows) are single cells or small clusters of tumor cells which detach from the main tumor body and invade surrounding tissue.

Picture: University of Berne, Institute of Pathology

The treatment of colorectal cancer requires an interdisciplinary approach. After surgery is performed to remove the cancer with part of the colon, the specimen is then examined by a physician with specialist training pathology who is responsible for confirming the diagnosis and determining tumor stage.

Additionally, in order to evaluate the biological behavior of an individual tumor the pathologist can also examine certain biomarkers, either microscopically or by additional molecular analysis. The information from such biomarkers may be of prognostic value, or predict response to a given therapy, so that treatment strategies can be tailored to individual patients.

Biomarkers for more precise prognosis

The phenomenon of ‘tumor budding’ has received increasing attention in the medical literature as an indicator of aggressiveness in colorectal cancer. Single cancer cells or small clusters of cancer cells gain the ability to detach from the main tumor body and increase the risk of colonization of other organs via lymphatic and blood vessels, ultimately leading to fatality.

However, until now, there has been no established and internationally recognized system to assess tumor budding in order for it to be used to influence clinical management decisions that directly affect patient care.

Bernese efforts to achieve consensus

At the end of April 2016, an international tumor budding consensus conference (ITBCC) initiated by the Colorectal Cancer Research Group was held in order to develop an internationally standardized method of assessing tumor buds. The method is cheap, can be performed anywhere and can replace in some circumstances expensive molecular testing.

This was a revolutionary step in improving biomarker assessment in colorectal cancer. The next step is to implement tumor budding as a prognostic indicator in national guidelines as well as colorectal cancer reporting recommendations of the World Health Organization (WHO), the UICC (Union Intérnationale Contre le Cancer) and the AJCC (American Joint Committee on Cancer).

«Reporting of tumor budding by pathologists worldwide will help serve as the basis for future clinical studies geared at the development of novel therapies targeted at tumor buds», says Alessandro Lugli, Head of the Division of Clinical Pathology at the Institute of Pathology.

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...
http://www.pathology.unibe.ch/index_eng.html

Nathalie Matter | Universität Bern

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>