Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel compounds show early promise in treatment of Parkinson's, Huntington's, Alzheimer's

08.12.2010
Success with human trials could lead to new drugs to halt progression of nerve-degenerative diseases

Investigators at Southern Methodist University and The University of Texas at Dallas have discovered a family of small molecules that shows promise in protecting brain cells against nerve-degenerative diseases such as Parkinson's, Alzheimer's and Huntington's, which afflict millions.

Dallas-based startup EncephRx, Inc. was granted the worldwide license to the jointly owned compounds. A biotechnology and therapeutics company, EncephRx will develop drug therapies based on the new class of compounds as a pharmaceutical for preventing nerve-cell damage, delaying onset of degenerative nerve disease and improving symptoms.

Treatments currently in use don't stop or reverse degenerative nerve diseases, but instead only alleviate symptoms, sometimes with severe side effects. If proved effective and nontoxic in humans, EncephRx's small-molecule pharmaceuticals would be the first therapeutic tools able to stop affected brain cells from dying.

"Our compounds protect against neurodegeneration in mice," said synthetic organic chemist Edward R. Biehl, the SMU Department of Chemistry professor who led development of the compounds at SMU. "Given successful development of the compounds into drug therapies, they would serve as an effective treatment for patients with degenerative brain diseases."

EncephRx initially will focus its development and testing efforts toward Huntington's disease and potentially will have medications ready for human trials in two years, said Aaron Heifetz, CEO at EncephRx.

Compounds developed by SMU and UTD collaboration
Biehl developed the compounds in collaboration with UT Dallas biology professor Santosh R. D'Mello, whose laboratory has been studying the process of neurodegeneration for several years.

"Additional research needs to be done, but these compounds have the potential for stopping or slowing the relentless loss of brain cells in diseases such as Alzheimer's and Parkinson's," said D'Mello, professor of molecular and cell biology at UT Dallas, with a joint appointment in the School of Brain and Behavioral Science. "The protective effect that they display in tissue culture and animal models of neurodegenerative disease provides strong evidence of their promise as drugs to treat neurodegenerative disorders."

Millions are suffering, particularly the elderly
Parkinson's, Huntington's and Alzheimer's are disorders of the central nervous system marked by abnormal and excessive loss of neurons in a part of the mid-brain, say the researchers.

The diseases steadily erode motor skills, including speech and the ability to walk, cause tremors, slowed movement, stooped posture, memory loss and mood and behavior problems.

The risk of developing a degenerative nerve disease increases with age. These diseases affect more than 5 million Americans.

Novel compounds effectively proved protective in initial studies
One member of a class of heterocyclic organic compounds, the synthetic chemicals developed and tested by SMU and UT Dallas scientists, was shown to be highly protective of neurons in tissue culture models and effective against neurodegeneration in animal models.

The most promising lead compound, designated HSB-13, was tested in Huntington's disease animal models. It not only reduced degeneration in a part of the forebrain but also improved behavioral performance while proving nontoxic. The compound also was efficacious in a commonly used fly model of Alzheimer's disease.

"These preliminary tests demonstrated that the compound was an extremely potent neuroprotective agent," Biehl said.

The findings were published in the article "Identification of novel 1,4-benzoxazine compounds that are protective in tissue culture and in vivo models of neurodegeneration," which appeared in the Journal of Neuroscience Research. The National Institutes of Health and the Defense Advanced Research Projects Agency funded the project.

The SMU and UT Dallas researchers developed and tested more than 100 compounds for neuroprotective efficacy and toxicity over the course of four years before making the discovery in 2007.

Interinstitutional partnership with EncephRx
SMU researchers will assist EncephRx in optimizing the primary compound, and the UT Dallas team will support testing and analysis.

"While discovery of the compounds is a major accomplishment, many hurdles remain," Biehl said.

EncephRx is a university spinout formed to develop and commercialize the compounds. Its management team has proven success in all facets of drug development and has developed more than a dozen chemical compounds.

Aaron Heifetz, president and chief executive officer of EncephRx, Inc., said, "We believe this library of novel neuroprotective compounds will prove an important step in the effort to improve the health for patients with neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease and Parkinson's disease."

Chris Jeffers, managing partner of FirstStage Bioventures, the parent company of EncephRx, added, "FirstStage is very excited about this technology and looks forward to helping EncephRx quickly move these compounds into the clinic."

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Dr. Biehl or Dr. D'Mello or to book them in the SMU studio, call SMU News & Communications at 214-768-7650 or UT Dallas Office of Media Relations at 972-883-4321.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU's seven degree-granting schools. For more information see www.smu.edu.

Margaret Allen | EurekAlert!
Further information:
http://www.smu.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>