Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combo of 3 antibiotics can kill deadly staph infections

15.09.2015

Three antibiotics that, individually, are not effective against a drug-resistant staph infection can kill the deadly pathogen when combined as a trio, according to new research.

The researchers, at Washington University School of Medicine in St. Louis, have killed the bug -- methicillin-resistant Staphylococcus aureus (MRSA) -- in test tubes and laboratory mice, and believe the same three-drug strategy may work in people.


Shown are clumps of MRSA bacteria magnified more than 2,300 times by an electron microscope.

Credit: Janice Haney Carr

"MRSA infections kill 11,000 people each year in the United States, and the pathogen is considered one of the world's worst drug-resistant microbes," said principal investigator Gautam Dantas, PhD, an associate professor of pathology and immunology. "Using the drug combination to treat people has the potential to begin quickly because all three antibiotics are approved by the FDA."

The study is published online Sept. 14 in the journal Nature Chemical Biology.

The three drugs -- meropenem, piperacillin and tazobactam -- are from a class of antibiotics called beta-lactams that has not been effective against MRSA for decades.

Working with collaborators in the microbiology laboratory at Barnes-Jewish Hospital? in St. Louis, Dantas' team tested and genetically analyzed 73 different variants of the MRSA microbe to represent a range of hospital-acquired and community-acquired forms of the pathogen. The researchers treated the various MRSA bugs with the three-drug combination and found that the treatments worked in every case.

Then, in experiments conducted by collaborators at the University of Notre Dame, the team found that the drug combination cured MRSA-infected mice and was as effective against the pathogen as one of the strongest antibiotics on the market.

"Without treatment, these MRSA-infected mice tend to live less than a day, but the three-drug combination cured the mice," Dantas said. "After the treatment, the mice were thriving."

Dantas explained that the drugs, which attack the cell wall of bacteria, work in a synergistic manner, meaning they are more effective combined than each alone.

The researchers also found that the drugs didn't produce resistance in MRSA bacteria -- an important finding since more and more bacteria are developing resistance to available drugs.

"This three-drug combination appears to prevent MRSA from becoming resistant to it," Dantas said. "We know all bacteria eventually develop resistance to antibiotics, but this trio buys us some time, potentially a significant amount of time."

Dantas' team also is investigating other antibiotics thought to be ineffective against various bacterial pathogens to see if they, too, may work if used in combination with other drugs.

"We started with MRSA because it's such a difficult bug to treat," he said. "But we are optimistic the same type of approach may work against other deadly pathogens, such as Pseudomonas and certain virulent forms of E. coli."

###

Funding for this research comes from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of General Medical Sciences, and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH). Additional funding comes from an NIH Director's New Innovator Award and a Ruth Kirschstein National Research Service Award from NIH. Grant numbers are DP2 DK098089, R01 GM099538, AI90818, AI104987, GM007067, T32 GM075762, F31 AI115851.

Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, Wolter WR, Schroeder VA, Burnham C-AD, Mobashery S, Chang M, Dantas G. Synergistic, collaterally sensitive ß-lactam combinations suppress resistance in MRSA. Nature Chemical Biology, published online Sept 14, 2015.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Media Contact

Jim Dryden
jdryden@wustl.edu
314-286-0110

 @WUSTLmed

http://www.medicine.wustl.edu 

Jim Dryden | EurekAlert!

Further reports about: Chemical Biology Combo MRSA Medicine antibiotics bacteria drug combination drugs infections

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>