Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia Engineering team develops targeted drug delivery to lung

03.09.2015

New method may provide more effective treatments of many lung diseases

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung.


A small liquid plug in the bronchus is manipulated by air ventilation to deliver drug into the most distant alveoli.

Credit: Jinho Kim//Columbia Engineering

Their approach, in which micro-liters of liquid containing a drug are instilled into the lung, distributed as a thin film in the predetermined region of the lung airway, and absorbed locally, may provide much more effective treatment of lung disease. The work was published in the August 31 online Early Edition of Proceedings of the National Academy of Sciences (PNAS).

Lungs are susceptible to many diseases, including cystic fibrosis, bronchopneumonia, chronic obstructive pulmonary disease, and lung cancer, that are currently treated by systemic application of drugs, by oral intake, or aerosol inhalation.

In order to achieve therapeutic levels at the pathological site, physicians need to deliver large amounts of the drug that may cause adverse effects to other organs in the body. Lung diseases could be more effectively treated if the drug of choice could be delivered locally to the pathologic site in the lung, at the exact dose needed for the treatment.

"We envision that our micro-volume liquid instillation approach will enable predictable drug concentrations at the target site, reducing the amount of drug required for effective disease treatment with significantly reduced side effects," says Gordana Vunjak-Novakovic, Mikati Foundation Professor of Biomedical Engineering and professor of medical sciences (in Medicine), who supervised the work in her Laboratory for Stem Cells and Tissue Engineering.

The main challenge for the team was the enormous complexity of the lung structure that provides the vital function of oxygen and carbon dioxide exchange with the blood. Both the tissue architecture and the air flow change dramatically along the 24 generations of the lung airway, from the large bronchus down to the alveoli.

Jinho Kim, a postdoctoral fellow in Vunjak-Novakovic's lab and the lead author of the study, realized that the distance a liquid plug travels before being absorbed as liquid film can be varied by changing the plug volume and the regime of ventilation.

By studying liquid plugs in simple glass tubes, he developed a mathematical model describing liquid transport process in each generation of the airway tree. The model was used to determine the liquid plug volume and the parameters of programmed ventilation for delivery into a specific region of the lung. The model predictions were confirmed by demonstrating targeted liquid film deposition in ventilated lungs, using three different imaging modalities.

"Liquid instillation has been used for providing lung surfactant to the entire lungs in premature infants that cannot produce enough surfactant to breathe normally," Kim observes. "Although liquid instillation has great therapeutic potential, its applications have been unexplored, largely because of limited understanding of the liquid transport in the lung airways. We are very excited about the implications of our work."

The project has been a highly collaborative one, says Vunjak-Novakovic, whose team included three biomedical engineers, a lung transplant surgeon, and a pulmonologist: "This study is truly emblematic of how biomedical research is conducted at Columbia University."

Kim devised the approach for targeted delivery of micro-volumes of drugs, developed the necessary theory, and conducted the supporting experiments with John O'Neill, a biomedical engineering PhD student. At CUMC, Matt Bacchetta, associate professor of surgery, and Valerio Dorrello, assistant professor of pediatrics, helped define the clinically relevant parameters for drug delivery, and optimize lung ventilation and perfusion. The researchers plan next to demonstrate treatment of lung diseases such as cystic fibrosis and airway infections by delivering pulmonary drugs using their liquid instillation approach.

"We are fascinated by the opportunities that bioengineering approaches offer to more effectively treat lung disease," Vunjak-Novakovic adds. "The lung is a hugely complex organ that has billions of cells within a hierarchically organized tissue that cannot be built from scratch. Four years ago, we started research of lung regeneration using stem cells and bioengineering methods. And we continue to work with our clinical colleagues to develop new treatment approaches for treating lung disease."

###

This research has been supported by the National Institutes of Health (experimental and modeling studies), the Raymond and Beverly Sackler Foundation (pilot grant for Jinho Kim) and the Mikati Family Fund for Translational Research in Biomedical Engineering (development of a new system for lung ventilation and perfusion).

LINKS

Paper -- http://www.pnas.org/content/early/recent
Vunjak-Novakovic -- http://bme.columbia.edu/gordana-vunjak-novakovic
Laboratory for Stem Cells and Tissue Engineering -- http://orion.bme.columbia.edu/gvnweb/
Columbia Engineering -- http://engineering.columbia.edu/
CUMC -- http://www.cumc.columbia.edu/

Holly Evarts | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>