Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-coding DNA implicated in type 2 diabetes

13.01.2014
Variations in non-coding sections of the genome might be important contributors to type 2 diabetes risk, according to a new study.

DNA sequences that don't encode proteins were once dismissed as "junk DNA", but scientists are increasingly discovering that some regions are important for controlling which genes are switched on.

The new study, published in Nature Genetics, is one of the first to show how such regions, called regulatory elements, can influence people's risk of disease.

Type 2 diabetes affects over 300 million people worldwide. Genetic factors have long been known to have an important role in determining a person's risk of type 2 diabetes, alongside other factors such as body weight, diet and age.

Many studies have identified regions of the genome where variations are linked to diabetes risk, but the function of many of these regions is unknown, making it difficult for scientists to glean insights into how and why the disease develops. Only around two per cent of the genome is made up of genes: the sequences that contain code for making proteins. Most of the remainder is shrouded in mystery.

"Non-coding DNA, or junk DNA as it is sometimes known, is the dark matter of the genome. We're only just beginning to unravel what it does," said leading author Professor Jorge Ferrer, a Wellcome Trust Senior Investigator from the Department of Medicine at Imperial College London.

In the new study scientists mapped the regulatory elements that orchestrate gene activity in the cells of the pancreas that produce insulin, a hormone that regulates blood sugar.

In type 2 diabetes, the tissues become less responsive to insulin, resulting in blood sugar levels being too high. Most people can compensate when this happens by producing more insulin, but in people with type 2 diabetes, the pancreas cannot cope with this increased demand.

"The cells that produce insulin appear to be programmed to behave differently in people with type 2 diabetes," said co-author Mark McCarthy, a Wellcome Trust Senior Investigator at the University of Oxford. "This study provides some important clues to the mechanisms which are disturbed in the earliest stages of the development of type 2 diabetes, and may point the way to novel ways of treating and preventing the disease."

The team identified genome sequences that drive gene activity in insulin-producing cells specifically. They found that these sequences are located in clusters, and that genetic variants known to be linked to diabetes risk are also found in these clusters.

"Many people have small DNA variants in such regulatory elements, and these variants affect gene expression in the cells that produce insulin. This knowledge will allow us to understand the detailed mechanisms whereby specific DNA variants predispose to diabetes," said Professor Ferrer.

For more information please contact:

Sam Wong
Research Media Officer
Imperial College London
Email: sam.wong@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248
Notes to editors
1. L. Pasquali et al. 'Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.' Nature Genetics, 12 January 2014. http://dx.doi.org/10.1038/ng.2870

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Sam Wong | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>